Découverte et géneralisation de connaissances appliquées aux procédés de fabrication

L objectif de cette thèse est de proposer une nouvelle architecture dédiée à la détection de défauts dans les procédés de fabrication. Cette dernière repose sur la combinaison des techniques d apprentissage automatique (ML) avec une Ontologie générique. L architecture est évolutive dans le sens où d...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux : Ferhat Mahmoud El Krim (Auteur), Leray Philippe (Directeur de thèse), Ritou Mathieu (Directeur de thèse), Iung Benoît (Président du jury de soutenance), Le Duigou Julien (Rapporteur de la thèse), Chamroukhi Faicel (Rapporteur de la thèse), Da Cunha Catherine (Membre du jury)
Collectivités auteurs : Nantes Université 2022-.... (Organisme de soutenance), École doctorale Mathématiques et sciences et technologies de l'information et de la communication Rennes (Ecole doctorale associée à la thèse), Laboratoire des Sciences du Numérique de Nantes (Laboratoire associé à la thèse)
Format : Thèse ou mémoire
Langue : français
Titre complet : Découverte et géneralisation de connaissances appliquées aux procédés de fabrication / Mahmoud El Krim Ferhat; sous la direction de Philippe Leray et de Mathieu Ritou
Publié : 2022
Accès en ligne : Accès Nantes Université
Note sur l'URL : Accès au texte intégral
Note de thèse : Thèse de doctorat : Informatique : Nantes Université : 2022
Sujets :
Description
Résumé : L objectif de cette thèse est de proposer une nouvelle architecture dédiée à la détection de défauts dans les procédés de fabrication. Cette dernière repose sur la combinaison des techniques d apprentissage automatique (ML) avec une Ontologie générique. L architecture est évolutive dans le sens où de nouveaux défauts peuvent être découverts par le ML et ajoutés en tant que nouvelles connaissances dans l ontologie de façon périodique. Cela facilite la détection des défauts dans les contextes industriels, où les défauts sont généralement rares. D autres part, l inspection périodique des connaissances capturées itérativement par l Ontologie nous permet de définir des connaissances plus génériques. Celles-ci permettront dans un premier temps d améliorer la détection de défauts dans des contextes connus et puis, dans un second temps, de reconnaître les défauts connus dans de nouveaux contextes industriels. Ces tâches sont liées aux domaines de l apprentissage par transfert et de l adaptation au domaine, appliquées ici pour induire de nouvelles connaissances dans l Ontologie, et augmenter les performances du système de détection de défauts. Des expériences sur des données UCI ainsi que sur des données issues des opérations de vissage réelles nous ont permis de valider la fiabilité et la robustesse de l approche.
The objective of this thesis is to propose a novel architecture dedicated to fault detection in manufacturing processes. It is based on the combination of Machine Learning (ML) techniques with a generic Ontology. The architecture is evolving in the sense that new defects can be discovered by the ML and added as new knowledge in the ontology periodically. This facilitates defect detection in industrial contexts, where defects are generally rare. On the other hand, the periodic inspection of the knowledge captured iteratively by the Ontology allows us to define more generic knowledge. This knowledge will first allow us to improve the detection of defects in known contexts and then, in a second step, to recognize known defects in new industrial contexts. These tasks are related to the fields of transfer learning and domain adaptation, applied here to induce new knowledge in the Ontology, and to increase the performances of the fault detection system. Experiments on several UCI datasets as well as on data from real screwing operations allowed us to validate the reliability and robustness of the approach.
Variantes de titre : Discovery and generalization of knowledge in manufacturing processes
Notes : Titre provenant de l'écran-titre
Ecole(s) Doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : Laboratoire des Sciences du Numérique de Nantes (Laboratoire)
Autre(s) contribution(s) : Benoît Iung (Président du jury) ; Catherine Da Cunha (Membre(s) du jury) ; Julien Le Duigou, Faicel Chamroukhi (Rapporteur(s))
Configuration requise : Configuration requise : un logiciel capable de lire un fichier au format : PDF