Applied scanning probe methods : IV Industrial applications

The Nobel Prize of 1986 on Sc- ningTunnelingMicroscopysignaled a new era in imaging. The sc- ning probes emerged as a new - strument for imaging with a p- cision suf?cient to delineate single atoms. At ?rstthere were two the ScanningTunnelingMicroscope,or STM,andtheAtomicForceMic- scope, or AFM. The...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux : Bhushan Bharat (Directeur de publication), Fuchs Harald (Directeur de publication)
Format : Livre
Langue : anglais
Titre complet : Applied scanning probe methods. IV, Industrial applications / edited by Bharat Bhushan, Harald Fuchs.
Édition : 1st ed. 2006.
Publié : Berlin, Heidelberg : Springer Berlin Heidelberg , [20..]
Cham : Springer Nature
Collection : Nanoscience and technology (Internet)
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Scanning Probe Lithography for Chemical, Biological and Engineering Applications. Nanotribological Characterization of Human Hair and Skin Using Atomic Force Microscopy (AFM). Nanofabrication with Self-Assembled Monolayers by Scanning Probe Lithography. Fabrication of Nanometer-Scale Structures by Local Oxidation Nanolithography. Template Effects of Molecular Assemblies Studied by Scanning Tunneling Microscopy (STM). Microfabricated Cantilever Array Sensors for (Bio-)Chemical Detection. Nano-Thermomechanics: Fundamentals and Application in Data Storage Devices. Applications of Heated Atomic Force Microscope Cantilevers
Sujets :
Documents associés : Autre format: Applied scanning probe methods IV
Autre format: Applied Scanning Probe Methods IV
Autre format: Applied Scanning Probe Methods IV
LEADER 05953clm a2200745 4500
001 PPN12312560X
003 http://www.sudoc.fr/12312560X
005 20241002160100.0
010 |a 978-3-540-26914-4 
017 7 0 |a 10.1007/b138289  |2 DOI 
035 |a (OCoLC)690281829 
035 |a Springer978-3-540-26914-4 
035 |a SPRINGER_EBOOKS_LN_PLURI_10.1007/b138289 
035 |a Springer-11644-978-3-540-26914-4 
100 |a 20080410f20 u y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a DE 
135 |a dr||||||||||| 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c c  |2 rdamedia 
182 1 |6 z01  |a b 
183 |6 z01  |a ceb  |2 RDAfrCarrier 
200 1 |a Applied scanning probe methods  |h IV  |i Industrial applications  |f edited by Bharat Bhushan, Harald Fuchs. 
205 |a 1st ed. 2006. 
214 0 |a Berlin, Heidelberg  |c Springer Berlin Heidelberg 
214 2 |a Cham  |c Springer Nature  |d [20..] 
225 0 |a NanoScience and Technology  |x 2197-7127 
327 1 |a Scanning Probe Lithography for Chemical, Biological and Engineering Applications  |a Nanotribological Characterization of Human Hair and Skin Using Atomic Force Microscopy (AFM)  |a Nanofabrication with Self-Assembled Monolayers by Scanning Probe Lithography  |a Fabrication of Nanometer-Scale Structures by Local Oxidation Nanolithography  |a Template Effects of Molecular Assemblies Studied by Scanning Tunneling Microscopy (STM)  |a Microfabricated Cantilever Array Sensors for (Bio-)Chemical Detection  |a Nano-Thermomechanics: Fundamentals and Application in Data Storage Devices  |a Applications of Heated Atomic Force Microscope Cantilevers 
330 |a The Nobel Prize of 1986 on Sc- ningTunnelingMicroscopysignaled a new era in imaging. The sc- ning probes emerged as a new - strument for imaging with a p- cision suf?cient to delineate single atoms. At ?rstthere were two the ScanningTunnelingMicroscope,or STM,andtheAtomicForceMic- scope, or AFM. The STM relies on electrons tunneling between tip and sample whereas the AFM depends on the force acting on the tip when itwasplacednearthesample.These were quickly followed by the M- netic Force Microscope, MFM, and the Electrostatic Force Microscope, EFM.TheMFMwillimageasinglemagneticbitwithfeaturesassmallas10nm. WiththeEFMonecanmonitorthechargeofasingleelectron.Prof.PaulHansma atSantaBarbaraopenedthedoorevenwiderwhenhewasabletoimagebiological objects in aqueous environments. At this point the sluice gates were opened and amultitudeofdifferentinstrumentsappeared. There are signi?cant differences between the Scanning Probe Microscopes or SPM, and others such as the Scanning Electron Microscope or SEM. The probe microscopes do not require preparation of the sample and they operate in ambient atmosphere, whereas, the SEM must operate in a vacuum environment and the sample must be cross-sectioned to expose the proper surface. However, the SEM canrecord3Dimage andmovies, featuresthatarenotavailable withthescanning probes. TheNearFieldOpticalMicroscopeorNSOMisalsomemberofthisfamily.At thistimetheinstrumentsuffersfromtwolimitations;1)mostoftheopticalenergy is lost as it traverses the cut-off region of the tapered ?ber and 2) the resolution is insuf?cient for many purposes. We are con?dent that NSOM s with a reasonable opticalthroughputandaresolutionof10nmwillsoonappear.TheSNOMwillthen enterthemainstreamofscanningprobes. VI Foreword In the Harmonic Force Microscope or HFM, the cantilever is driven at the resonantfrequencywiththeamplitudeadjustedsothatthetipimpactsthesampleon each cycle. Theforcesbetween tipandsample generate multiple harmonics inthe motionofthecantilever.Thestrengthoftheseharmonicscanbeusedtocharacterize thephysicalpropertiesofthesurface 
371 0 |a Accès en ligne pour les établissements français bénéficiaires des licences nationales 
371 0 |a Accès soumis à abonnement pour tout autre établissement 
371 1 |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales  |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 
410 | |0 17428859X  |t Nanoscience and technology (Internet)  |x 2197-7127 
452 | |0 107984407  |t Applied scanning probe methods IV  |o industrial applications  |f edited by Bharat Bhushan, Harald Fuchs  |c Berlin  |n Springer  |d 2006  |s Nanoscience and technology  |y 3-540-26912-6 
452 | |t Applied Scanning Probe Methods IV  |b Texte imprimé  |y 9783642065972 
452 | |t Applied Scanning Probe Methods IV  |b Texte imprimé  |y 9783540812661 
610 1 |a Chemistry 
610 2 |a Physical Chemistry 
610 2 |a Solid State Physics and Spectroscopy 
610 2 |a Analytical Chemistry 
610 2 |a Nanotechnology 
610 2 |a Surfaces and Interfaces, Thin Films 
610 2 |a Polymer Sciences 
610 1 |a Nanotechnology and Microengineering 
610 2 |a Spectroscopy and Microscopy 
610 2 |a Surface and Interface Science, Thin Films 
615 |a @Chemistry and Materials Science  |n 11644; ZDB-2-CMS  |2 Springer 
615 |a @Chemistry and Materials Science  |n 11644  |2 Springer 
615 |a Chemistry and Materials Science  |n 11644  |2 Springer 
676 |a 620.5  |v 23 
680 |a T174.7 
700 1 |a Bhushan  |b Bharat  |4 651 
701 1 |a Fuchs  |b Harald  |4 651 
801 3 |a FR  |b Abes  |c 20240911  |g AFNOR 
801 1 |a DE  |b Springer  |c 20220104  |g AACR2 
856 4 |q PDF  |u https://doi.org/10.1007/b138289  |z Accès sur la plateforme de l'éditeur 
856 4 |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-RGWK91GH-C  |z Accès sur la plateforme Istex 
856 4 |5 441099901:830928812  |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/b138289 
915 |5 441099901:830928812  |b SPRING4-00235 
930 |5 441099901:830928812  |b 441099901  |j g 
979 |a NUM 
991 |5 441099901:830928812  |a Exemplaire créé en masse par ITEM le 01-10-2024 15:46 
997 |a NUM  |b SPRING4-00235  |d NUMpivo  |e EM  |s d 
998 |a 980228