Fundamental factorization of a GLSM : Part I construction
We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants cons...
Auteurs principaux : | , , , , |
---|---|
Format : | Livre |
Langue : | anglais |
Titre complet : | Fundamental factorization of a GLSM. Part I : construction / Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim, Mark Shoemaker |
Publié : |
Providence :
American Mathematical Society
, 2023 C 2023 |
Description matérielle : | 1 volume (V-96 p.) |
Collection : | Memoirs of the American Mathematical Society ; 1435 |
Sujets : | |
Documents associés : | Autre format:
Fundamental factorization of a GLSM:part I:construction |
LEADER | 02891cam a2200565 4500 | ||
---|---|---|---|
001 | PPN27300462X | ||
003 | http://www.sudoc.fr/27300462X | ||
005 | 20231207060700.0 | ||
010 | |a 978-1-4704-6543-8 | ||
010 | |a 1-4704-6543-4 | ||
035 | |a (OCoLC)1402288406 | ||
035 | |a on1402288406 | ||
073 | 1 | |a 9781470465438 | |
100 | |a 20231107h20232023k y0frey0103 ba | ||
101 | 0 | |a eng |2 639-2 | |
102 | |a US | ||
105 | |a a a 000yy | ||
106 | |a r | ||
181 | |6 z01 |c txt |2 rdacontent | ||
181 | 1 | |6 z01 |a i# |b xxxe## | |
182 | |6 z01 |c n |2 rdamedia | ||
182 | 1 | |6 z01 |a n | |
183 | |6 z01 |a nga |2 RDAfrCarrier | ||
200 | 1 | |a Fundamental factorization of a GLSM |h Part I |e construction |f Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim, Mark Shoemaker | |
214 | 0 | |a Providence |c American Mathematical Society |d 2023 | |
214 | 4 | |d C 2023 | |
215 | |a 1 volume (V-96 p.) |c ill. |d 26 cm | ||
225 | 0 | |a Memoirs of the American Mathematical Society |v 1435 | |
320 | |a Bibliogr. p. 93-96 | ||
330 | |a We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants constructed by Polishchuk-Vaintrob. The invariants are defined by constructing a "fundamental factorization" supported on the moduli space of Landau-Ginzburg maps to a convex hybrid model. This gives the kernel of a Fourier-Mukai transform; the associated map on Hochschild homology defines our theory | ||
359 | 2 | |b Chapter 1. Introduction |b Chapter 2. Overview of the construction |b Chapter 3. Factorizations |b Chapter 4. Admissible resolutions of GLSMs |b Chapter 5. Construction of a projective embedding |b Chapter 6. The GLMS theory for convex hybrid models |b Chapter 7. Comparisons with other constructions |b Bibliography | |
410 | | | |0 013293931 |t Memoirs of the American Mathematical Society |x 0065-9266 |v 1435 | |
452 | | | |t Fundamental factorization of a GLSM:part I:construction |y 978-1-4704-7590-1 | |
517 | | | |a Fundamental factorization of a GLSM Part 1 | |
606 | |3 PPN113932103 |a Invariants de Gromov-Witten |2 rameau | ||
606 | |3 PPN027228002 |a Géométrie algébrique |2 rameau | ||
680 | |a QA3 |b .A57 no. 1435 | ||
686 | |a 14N35 |c 2020 |2 msc | ||
686 | |a 14F08 |c 2020 |2 msc | ||
686 | |a 53D45 |c 2020 |2 msc | ||
700 | 1 | |3 PPN273005863 |a Ciocan-Fontanine |b Ionut |f 19XX- |4 070 | |
701 | 1 | |3 PPN273502549 |a Favero |b David Rudy |f 19..-.... |4 070 | |
701 | 1 | |3 PPN187831556 |a Guéré |b Jérémy |f 1988-.... |4 070 | |
701 | 1 | |3 PPN273502840 |a Kim |b Bumsig |f 19..-.... |4 070 | |
701 | 1 | |3 PPN079252966 |a Shoemaker |b Martin L. |4 070 | |
801 | 3 | |a FR |b Abes |c 20231206 |g AFNOR | |
801 | 0 | |b EAU |g AACR2 | |
930 | |5 441092208:804933839 |b 441092208 |j u | ||
979 | |a CCFA | ||
998 | |a 954293 |