Fundamental factorization of a GLSM : Part I construction

We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants cons...

Description complète

Détails bibliographiques
Auteurs principaux : Ciocan-Fontanine Ionut (Auteur), Favero David Rudy (Auteur), Guéré Jérémy (Auteur), Kim Bumsig (Auteur), Shoemaker Martin L. (Auteur)
Format : Livre
Langue : anglais
Titre complet : Fundamental factorization of a GLSM. Part I : construction / Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim, Mark Shoemaker
Publié : Providence : American Mathematical Society , 2023
C 2023
Description matérielle : 1 volume (V-96 p.)
Collection : Memoirs of the American Mathematical Society ; 1435
Sujets :
Documents associés : Autre format: Fundamental factorization of a GLSM:part I:construction
LEADER 02891cam a2200565 4500
001 PPN27300462X
003 http://www.sudoc.fr/27300462X
005 20231207060700.0
010 |a 978-1-4704-6543-8 
010 |a 1-4704-6543-4 
035 |a (OCoLC)1402288406 
035 |a on1402288406 
073 1 |a 9781470465438 
100 |a 20231107h20232023k y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a US 
105 |a a a 000yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Fundamental factorization of a GLSM  |h Part I  |e construction  |f Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim, Mark Shoemaker 
214 0 |a Providence  |c American Mathematical Society  |d 2023 
214 4 |d C 2023 
215 |a 1 volume (V-96 p.)  |c ill.  |d 26 cm 
225 0 |a Memoirs of the American Mathematical Society  |v 1435 
320 |a Bibliogr. p. 93-96 
330 |a We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants constructed by Polishchuk-Vaintrob. The invariants are defined by constructing a "fundamental factorization" supported on the moduli space of Landau-Ginzburg maps to a convex hybrid model. This gives the kernel of a Fourier-Mukai transform; the associated map on Hochschild homology defines our theory 
359 2 |b Chapter 1. Introduction  |b Chapter 2. Overview of the construction  |b Chapter 3. Factorizations  |b Chapter 4. Admissible resolutions of GLSMs  |b Chapter 5. Construction of a projective embedding  |b Chapter 6. The GLMS theory for convex hybrid models  |b Chapter 7. Comparisons with other constructions  |b Bibliography 
410 | |0 013293931  |t Memoirs of the American Mathematical Society  |x 0065-9266  |v 1435 
452 | |t Fundamental factorization of a GLSM:part I:construction  |y 978-1-4704-7590-1 
517 | |a Fundamental factorization of a GLSM Part 1 
606 |3 PPN113932103  |a Invariants de Gromov-Witten  |2 rameau 
606 |3 PPN027228002  |a Géométrie algébrique  |2 rameau 
680 |a QA3  |b .A57 no. 1435 
686 |a 14N35  |c 2020  |2 msc 
686 |a 14F08  |c 2020  |2 msc 
686 |a 53D45  |c 2020  |2 msc 
700 1 |3 PPN273005863  |a Ciocan-Fontanine  |b Ionut  |f 19XX-  |4 070 
701 1 |3 PPN273502549  |a Favero  |b David Rudy  |f 19..-....  |4 070 
701 1 |3 PPN187831556  |a Guéré  |b Jérémy  |f 1988-....  |4 070 
701 1 |3 PPN273502840  |a Kim  |b Bumsig  |f 19..-....  |4 070 
701 1 |3 PPN079252966  |a Shoemaker  |b Martin L.  |4 070 
801 3 |a FR  |b Abes  |c 20231206  |g AFNOR 
801 0 |b EAU  |g AACR2 
930 |5 441092208:804933839  |b 441092208  |j u 
979 |a CCFA 
998 |a 954293