Fundamental factorization of a GLSM : Part I construction
We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants cons...
Auteurs principaux : | , , , , |
---|---|
Format : | Livre |
Langue : | anglais |
Titre complet : | Fundamental factorization of a GLSM. Part I : construction / Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim, Mark Shoemaker |
Publié : |
Providence :
American Mathematical Society
, 2023 C 2023 |
Description matérielle : | 1 volume (V-96 p.) |
Collection : | Memoirs of the American Mathematical Society ; 1435 |
Sujets : | |
Documents associés : | Autre format:
Fundamental factorization of a GLSM:part I:construction |
Résumé : | We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants constructed by Polishchuk-Vaintrob. The invariants are defined by constructing a "fundamental factorization" supported on the moduli space of Landau-Ginzburg maps to a convex hybrid model. This gives the kernel of a Fourier-Mukai transform; the associated map on Hochschild homology defines our theory |
---|---|
Variantes de titre : | Fundamental factorization of a GLSM Part 1 |
Bibliographie : | Bibliogr. p. 93-96 |
ISBN : | 978-1-4704-6543-8 1-4704-6543-4 |