Fundamental factorization of a GLSM : Part I construction

We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants cons...

Description complète

Détails bibliographiques
Auteurs principaux : Ciocan-Fontanine Ionut (Auteur), Favero David Rudy (Auteur), Guéré Jérémy (Auteur), Kim Bumsig (Auteur), Shoemaker Martin L. (Auteur)
Format : Livre
Langue : anglais
Titre complet : Fundamental factorization of a GLSM. Part I : construction / Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim, Mark Shoemaker
Publié : Providence : American Mathematical Society , 2023
C 2023
Description matérielle : 1 volume (V-96 p.)
Collection : Memoirs of the American Mathematical Society ; 1435
Sujets :
Documents associés : Autre format: Fundamental factorization of a GLSM:part I:construction
Description
Résumé : We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants constructed by Polishchuk-Vaintrob. The invariants are defined by constructing a "fundamental factorization" supported on the moduli space of Landau-Ginzburg maps to a convex hybrid model. This gives the kernel of a Fourier-Mukai transform; the associated map on Hochschild homology defines our theory
Variantes de titre : Fundamental factorization of a GLSM Part 1
Bibliographie : Bibliogr. p. 93-96
ISBN : 978-1-4704-6543-8
1-4704-6543-4