Sheaves and symplectic geometry of cotangent bundles

The aim of this paper is to apply the microlocal theory of sheaves of Kashiwara-Schapira to the symplectic geometry of cotangent bundles, following ideas of Nadler-Zaslow and Tamarkin. We recall the main notions and results of the microlocal theory of sheaves, in particular the microsupport of sheav...

Description complète

Détails bibliographiques
Auteur principal : Guillermou Stéphane (Auteur)
Format : Livre
Langue : anglais
Titre complet : Sheaves and symplectic geometry of cotangent bundles / Stéphane Guillermou
Publié : Paris : Société mathématique de France , DL 2023
Description matérielle : 1 vol. (x-274 p.)
Collection : Astérisque ; 440
Sujets :
Documents associés : Autre format: Sheaves and symplectic geometry of cotangent bundles
Fait partie de l'ensemble: Astérisque
LEADER 02965cam a2200445 4500
001 PPN271065931
003 http://www.sudoc.fr/271065931
005 20231011060000.0
010 |a 978-2-85629-972-2  |b br. 
035 |a (OCoLC)1390651531 
073 1 |a 9782856299722 
100 |a 20230712h20232023k y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a FR 
105 |a a a 000yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Sheaves and symplectic geometry of cotangent bundles  |f Stéphane Guillermou 
214 0 |a Paris  |c Société mathématique de France  |d DL 2023 
215 |a 1 vol. (x-274 p.)  |c fig.  |d 24 cm 
305 |a N° de : "Astérisque", ISSN 0303-1179, (2023)n°440 
320 |a Bibliographie pages [271]-274 
330 |a The aim of this paper is to apply the microlocal theory of sheaves of Kashiwara-Schapira to the symplectic geometry of cotangent bundles, following ideas of Nadler-Zaslow and Tamarkin. We recall the main notions and results of the microlocal theory of sheaves, in particular the microsupport of sheaves. The microsupport of a sheaf F on a manifold M is a closed conic subset of the cotangent bundle T M which indicates in which directions we can modify a given open subset of M without modifying the cohomology of F on this subset. An important theorem of Kashiwara-Schapira says that the microsupport is coisotropic and recent works of Nadler-Zaslow and Tamarkin study in the other direction the sheaves which have for microsupport a given Lagrangian submanifold , obtaining information on in this way. Nadler and Zaslow made the link with the Fukaya category but Tamarkin only made use of the microlocal sheaf theory. We go on in this direction and recover several results of symplectic geometry with the help of sheaves. In particular we explain how we can recover the Gromov nonsqueezing theorem, the Gromov-Eliashberg rigidity theorem, the existence of graph selectors. We also prove a three cusps conjecture of Arnol'd about curves on the sphere. In the last sections we recover more recent results on the topology of exact Lagrangian submanifolds of cotangent bundles.  |2 4e de couverture 
452 | |0 272107549  |t Sheaves and symplectic geometry of cotangent bundles  |f Stéphane Guillermou  |d 2023  |c Paris  |n Société mathématique de France 
461 | |0 013566385  |t Astérisque  |x 0303-1179  |v 440 
606 |3 PPN031533779  |a Géométrie symplectique  |2 rameau 
606 |3 PPN027844455  |a Faisceaux, Théorie des  |2 rameau 
606 |3 PPN027339521  |a Catégories (mathématiques)  |2 rameau 
686 |a 18F20  |c 2010  |2 msc 
686 |a 35A27  |c 2010  |2 msc 
686 |a 53D12  |c 2010  |2 msc 
700 1 |3 PPN196793106  |a Guillermou  |b Stéphane  |f 19..-....  |4 070 
801 3 |a FR  |b Abes  |c 20230921  |g AFNOR 
930 |5 441092208:799449059  |b 441092208  |j b 
979 |a CCFA 
998 |a 949997