Theta functions on varieties with effective anti-canonical class

We show that a large class of maximally degenerating families of n-dimensional polarized varieties comes with a canonical basis of sections of powers of the ample line bundle. The families considered are obtained by smoothing a reducible union of toric varieties governed by a wall structure on a rea...

Description complète

Détails bibliographiques
Auteurs principaux : Gross Mark W. (Auteur), Hacking Paul (Auteur), Siebert Bernd (Auteur)
Format : Livre
Langue : anglais
Titre complet : Theta functions on varieties with effective anti-canonical class / Mark Gross, Paul Hacking, Bernd Siebert
Publié : Providence (R.I.) : American Mathematical Society , C 2022
Description matérielle : 1 vol. (xii-103 p.)
Collection : Memoirs of the American Mathematical Society ; 1367
Sujets :
LEADER 03769cam a2200565 4500
001 PPN264685164
003 http://www.sudoc.fr/264685164
005 20230614061900.0
010 |a 978-1-4704-5297-1 
020 |a US  |b 2022027936 
035 |a (OCoLC)1346144066 
035 |a on1336987208 
073 1 |a 9781470452971 
100 |a 20220928h20222022k y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a US 
105 |a y a 000yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Theta functions on varieties with effective anti-canonical class  |f Mark Gross, Paul Hacking, Bernd Siebert 
214 0 |a Providence (R.I.)  |c American Mathematical Society 
214 4 |d C 2022 
215 |a 1 vol. (xii-103 p.)  |d 26 cm 
225 2 |a Memoirs of the American Mathematical Society  |x 0065-9266  |v number 1367 
320 |a Bibliogr. p. 101-103 
330 |a We show that a large class of maximally degenerating families of n-dimensional polarized varieties comes with a canonical basis of sections of powers of the ample line bundle. The families considered are obtained by smoothing a reducible union of toric varieties governed by a wall structure on a real n-(pseudo-)manifold. Wall structures have previously been constructed inductively for cases with locally rigid singularities [Gross and Siebert, From real affine geometry to complex geometry (2011)] and by Gromov-Witten theory for mirrors of log Calabi-Yau surfaces and K3 surfaces [Gross, Pandharipande and Siebert, The tropical vertex ; Gross, Hacking and Keel, Mirror symmetry for log Calabi-Yau surfaces (2015); Gross, Hacking, Keel, and Siebert, Theta functions and K3 surfaces (In preparation)]. For trivial wall structures on the n-torus we retrieve the classical theta functions. We anticipate that wall structures can be constructed quite generally from maximal degenerations. The construction given here then provides the homogeneous coordinate ring of the mirror degeneration along with a canonical basis. The appearance of a canonical basis of sections for certain degenerations points towards a good compactification of moduli of certain polarized varieties via stable pairs, generalizing the picture for K3 surfaces [Gross, Hacking, Keel, and Siebert, Theta functions and K3 surfaces (In preparation)]. Another possible application apart from mirror symmetry may be to geometric quantization of varieties with effective anti-canonical class.  |2 résumé des auteurs 
359 2 |b Introduction  |b Chapter 1. The affine geometry of the construction  |b Chapter 2. Wall structures  |b Chapter 3. Broken lines and canonical global functions  |b Chapter 4. The projective case --- theta functions  |b Chapter 5. Additional parameters  |b Chapter 6. Abelian varieties and other examples  |b Appendix A. The GS case  |b Bibliography 
410 | |0 013293931  |t Memoirs of the American Mathematical Society  |x 0065-9266  |v 1367 
606 |3 PPN03144492X  |a Fonctions thêta  |2 rameau 
606 |3 PPN029649668  |a Surfaces algébriques  |2 rameau 
606 |3 PPN034871977  |a Symétrie miroir  |2 rameau 
606 |3 PPN032621019  |a Calabi-Yau, Variétés de  |2 rameau 
676 |a 515/.984  |v 23/eng20220913 
680 |a QA345  |b .G76 2022 
686 |a 14J33  |c 2020  |2 msc 
686 |a 14J32  |c 2020  |2 msc 
686 |a 14J45  |c 2020  |2 msc 
700 1 |3 PPN082125295  |a Gross  |b Mark W.  |f 1965-....  |4 070 
701 1 |3 PPN264685881  |a Hacking  |b Paul  |f 19..-....  |4 070 
701 1 |3 PPN254641857  |a Siebert  |b Bernd  |f 1964-....  |4 070 
801 3 |a FR  |b Abes  |c 20230505  |g AFNOR 
801 0 |b DLC  |g AACR2 
801 2 |b PAU  |g AACR2 
930 |5 441092208:792108272  |b 441092208  |j u 
979 |a CCFA 
998 |a 944087