Triangulated categories of logarithmic motives over a field
In this work we develop a theory of motives for logarithmic schemes over fields in the sense of Fontaine, Illusie, and Kato. Our construction is based on the notion of finite log correspondences, the dividing Nisnevich topology on log schemes, and the basic idea of parameterizing homotopies by , i.e...
Auteurs principaux : | , , |
---|---|
Format : | Livre |
Langue : | anglais |
Titre complet : | Triangulated categories of logarithmic motives over a field / Federico Binda, Doosung Park & Paul Arne Østvær |
Publié : |
Paris :
Société mathématique de France
, C 2022 |
Description matérielle : | 1 vol. (ix-267 p.) |
Collection : | Astérisque ; 433 |
Sujets : | |
Documents associés : | Autre format:
Triangulated categories of logarithmic motives over a field Fait partie de l'ensemble: Astérisque |
Chargement en cours