Triangulated categories of logarithmic motives over a field

In this work we develop a theory of motives for logarithmic schemes over fields in the sense of Fontaine, Illusie, and Kato. Our construction is based on the notion of finite log correspondences, the dividing Nisnevich topology on log schemes, and the basic idea of parameterizing homotopies by , i.e...

Description complète

Détails bibliographiques
Auteurs principaux : Binda Federico (Auteur), Park Doosung (Auteur), Østvær Paul Arne (Auteur)
Format : Livre
Langue : anglais
Titre complet : Triangulated categories of logarithmic motives over a field / Federico Binda, Doosung Park & Paul Arne Østvær
Publié : Paris : Société mathématique de France , C 2022
Description matérielle : 1 vol. (ix-267 p.)
Collection : Astérisque ; 433
Sujets :
Documents associés : Autre format: Triangulated categories of logarithmic motives over a field
Fait partie de l'ensemble: Astérisque
LEADER 03039cam a2200553 4500
001 PPN262501058
003 http://www.sudoc.fr/262501058
005 20221122060000.0
010 |a 978-2-85629-957-9  |b br.  |d 55 EUR 
035 |a (OCoLC)1319078103 
073 1 |a 9782856299579 
100 |a 20220520h20222022k y0frey0103 ba 
101 0 |a eng  |d eng  |d fre 
102 |a FR 
105 |a a a 001yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Triangulated categories of logarithmic motives over a field  |f Federico Binda, Doosung Park & Paul Arne Østvær 
214 0 |a Paris  |c Société mathématique de France 
214 4 |d C 2022 
215 |a 1 vol. (ix-267 p.)  |c illustations  |d 24 cm 
302 |a Résumé en anglais et en français 
305 |a N° de : "Astérisque", ISSN 0303-1179, (2022)n°433 
320 |a Bibliographie p. [257]-263. Index 
330 |a In this work we develop a theory of motives for logarithmic schemes over fields in the sense of Fontaine, Illusie, and Kato. Our construction is based on the notion of finite log correspondences, the dividing Nisnevich topology on log schemes, and the basic idea of parameterizing homotopies by , i.e. the projective line with respect to its compactifying logarithmic structure at infinity. We show that Hodge cohomology of log schemes is a -invariant theory that is representable in the category of logarithmic motives. Our category is closely related to Voevodsky's category of motives and A1-invariant theories: assuming resolution of singularities, we identify the latter with the full subcategory comprised of A1-local objects in the category of logarithmic motives. Fundamental properties such as -homotopy invariance, Mayer-Vietoris for coverings, the analogs of the Gysin sequence and the Thom space isomorphism as well as a blow-up formula and a projective bundle formula witness the robustness of the setup.  |2 4e de couverture 
452 | |0 262997622  |t Triangulated categories of logarithmic motives over a field  |f Federico Binda, Doosung Park & Paul Arne Østvær  |c Paris  |n Société mathématique de France  |d 2022 
461 | |0 013566385  |t Astérisque  |x 0303-1179  |v 433 
606 |3 PPN027228002  |a Géométrie algébrique  |2 rameau 
606 |3 PPN027339521  |a Catégories (mathématiques)  |2 rameau 
606 |3 PPN027394247  |a Topologie  |2 rameau 
686 |a 14A21  |c 2020  |2 msc 
686 |a 14A30  |c 2020  |2 msc 
686 |a 14F42  |c 2020  |2 msc 
686 |a 18N40  |c 2020  |2 msc 
686 |a 18N55  |c 2020  |2 msc 
686 |a 18F10  |c 2020  |2 msc 
686 |a 18G35  |c 2020  |2 msc 
686 |a 19E15  |c 2020  |2 msc 
700 1 |3 PPN253881668  |a Binda  |b Federico  |f 1988-....  |4 070 
701 1 |3 PPN262501031  |a Park  |b Doosung  |f 19..-....  |4 070 
701 1 |3 PPN148260063  |a Østvær  |b Paul Arne  |f 1973-....  |4 070 
801 3 |a FR  |b Abes  |c 20220902  |g AFNOR 
930 |5 441092208:763552747  |b 441092208  |j u 
979 |a CCFA 
998 |a 935835