Hands-on unsupervised learning using Python : how to build applied machine learning solutions from unlabeled data

Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal : Patel Ankur A. (Auteur)
Format : Livre
Langue : anglais
Titre complet : Hands-on unsupervised learning using Python : how to build applied machine learning solutions from unlabeled data / Ankur A. Patel
Publié : Sebastopol, CA : O'Reilly Media , 2019
Description matérielle : 1 vol. (XX-337 p.)
Sujets :
LEADER 02750cam a2200385 4500
001 PPN250181207
003 http://www.sudoc.fr/250181207
005 20230303060900.0
010 |a 978-1-492-03564-0  |b br.  |d 69,99 USD ; 92,99 CAD 
073 1 |a 9781492035640 
100 |a 20201105h20192019k y0frey0103 ba 
101 0 |a eng 
102 |a US 
105 |a a z 001yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 1 |6 z01  |a nga  |2 rdacarrier 
200 1 |a Hands-on unsupervised learning using Python  |e how to build applied machine learning solutions from unlabeled data  |f Ankur A. Patel 
214 0 |a Sebastopol, CA  |c O'Reilly Media  |d 2019 
215 |a 1 vol. (XX-337 p.)  |c ill.  |d 24 cm 
320 |a Index 
330 |a Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. -Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning; - Set up and manage machine learning projects end-to-end; -Build an anomaly detection system to catch credit card fraud; -Clusters users into distinct and homogeneous groups; -Perform semisupervised learning; -Develop movie recommender systems using restricted Boltzmann machines; - Generate synthetic images using generative adversarial networks.  |2 4e de couverture 
606 |3 PPN027234541  |a Intelligence artificielle  |2 rameau 
606 |3 PPN027940373  |a Apprentissage automatique  |2 rameau 
606 |3 PPN236338269  |a Apprentissage non supervisé (intelligence artificielle)  |2 rameau 
606 |3 PPN051626225  |a Python (langage de programmation)  |2 rameau 
676 |a 006.31  |v 23 
700 1 |3 PPN250242095  |a Patel  |b Ankur A.  |4 070 
801 3 |a FR  |b Abes  |c 20201109  |g AFNOR 
979 |a SCI 
930 |5 441092104:678435545  |b 441092104  |j u 
998 |a 878063