Etude de la plasticité du titane en température : couplage entre la diffraction et les approches à champs moyens

Les alliages métalliques de structure hexagonale ont la particularité de présenter une forte anisotropie plastique et une grande variété de modes de déformation (glissement et maclage) dont l activité dépend de nombreux facteurs. Selon la température et le mode de sollicitation mécanique, la déforma...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux : Agbovi Kodjo (Auteur), Gloaguen David (Directeur de thèse), Fajoui Jamal (Directeur de thèse), Girault Baptiste (Directeur de thèse), Hug Eric (Président du jury de soutenance), Arbab Chirani Shabnam (Membre du jury), Bouvier Salima (Membre du jury)
Collectivités auteurs : Université de Nantes 1962-2021 (Organisme de soutenance), Sciences de l'ingénierie et des systèmes Centrale Nantes (Ecole doctorale associée à la thèse), Université Bretagne Loire 2016-2019 (Autre partenaire associé à la thèse), Institut de Recherche en Génie Civil et Mécanique Nantes (Laboratoire associé à la thèse)
Format : Thèse ou mémoire
Langue : français
Titre complet : Etude de la plasticité du titane en température : couplage entre la diffraction et les approches à champs moyens / Kodjo Agbovi; sous la direction de David Gloaguen et de Jamal Fajoui et de Baptiste Girault
Publié : 2019
Accès en ligne : Accès Nantes Université
Note sur l'URL : Accès au texte intégral
Note de thèse : Thèse de doctorat : Mécanique des solides, des matériaux, des structures et des surfaces : Nantes : 2019
Sujets :
Description
Résumé : Les alliages métalliques de structure hexagonale ont la particularité de présenter une forte anisotropie plastique et une grande variété de modes de déformation (glissement et maclage) dont l activité dépend de nombreux facteurs. Selon la température et le mode de sollicitation mécanique, la déformation plastique dans les alliages de titane, en particulier le titane-a (Ti-a), présente un enchainement complexe d activation de ces différents systèmes de glissements et de maclage, encore mal compris actuellement. Pour mieux appréhender le comportement mécanique du Ti-a, la méthode expérimentale privilégiée a été la diffraction des neutrons et des RX pour l analyse fine des déformations intergranulaires développées durant les chargements en traction à différentes températures (de l ambiant jusqu à 300 °C).L état mécanique du matériau aux différentes échelles (mésoscopique et macroscopique) a été analysé afin d avoir des informations sur les mécanismes physiques régissant son comportement global.Une approche autocohérente élastoplastique a été adoptée pour expliquer les observations expérimentales durant les différents chargements thermomécaniques. Elle nous a permis de reproduire quantitativement la loi de comportement du polycristal et des groupes de grains sondés. Cette approche nous a également fourni des données pertinentes sur l influence de la température sur l état mécanique et l anisotropie plastique d un matériau comme le titane-a.
Hexagonal close-packed metallic alloys develop a strong plastic anisotropy with a large variety of deformation modes (slip and twinning systems) which depends on many factors. Plastic deformation of titanium alloys, especially a-titanium (a-Ti), depends on temperature and mechanical loading mode. It is accommodated by a complex mixture of crystallographic slips and twinning. It remains though unclear which deformation systems are actually activated in the polycrystal during straining. In order to better understand the mechanical behavior of textured a-Ti, neutron and synchrotron X-ray diffraction measurements have been performed to analyze the intergranular strain evolution under tensile tests at different temperatures ranging from ambient up to 300 °C.The material have then been carefully characterized from meso-(grain) to macroscopic scales to obtain relevant information about the physical mechanisms governing its global behavior. An elastoplastic self-consistent approach has been used to explain and interpret the experimental observations achieved under thermomechanical loadings. The model enabled us to predict with success the measured macroscopic behavior and the lattice strain development. It has also provided a comprehensive data set on temperature influence onto the mechanical state and the plastic anisotropy, especially at the mesoscopic level.
Variantes de titre : Influence of temperature on titanium plasticity : diffraction techniques and mean-field approaches
Notes : Titre provenant de l'écran-titre
Ecole(s) Doctorale(s) : École doctorale Sciences pour l'ingénieur (Nantes)
Partenaire(s) de recherche : Université Bretagne Loire (COMUE), Institut de Recherche en Génie Civil et Mécanique (Nantes) (Laboratoire)
Autre(s) contribution(s) : Eric Hug (Président du jury) ; Shabnam Arbab Chirani, Salima Bouvier (Membre(s) du jury)
Configuration requise : Configuration requise : un logiciel capable de lire un fichier au format : PDF