Flexible regression and smoothing : using GAMLSS in R

This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. GAMLSS allows any pa...

Description complète

Détails bibliographiques
Auteurs principaux : Stasinopoulos Mikis D. (Auteur), Rigby Robert A. (Auteur), Heller Gillian (Auteur), Voudouris Vlasios (Auteur), De Bastiani Fernanda (Auteur)
Format : Livre
Langue : anglais
Titre complet : Flexible regression and smoothing : using GAMLSS in R / Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller... [et al.]
Publié : Boca Raton : CRC Press/Taylor & Francis Group , C 2017
Description matérielle : 1 vol. (xxii-549 pages)
Collection : Chapman & Hall/CRC the R series (Print)
Sujets :
  • Introduction to models and packages. Why GAMLSS?
  • Introduction to the gamlss packages
  • Algorithms, functions and inference. The algorithms
  • The gamlss() function
  • Inference and prediction
  • Distributions. The GAMLSS family of distributions
  • Finite mixture distributions
  • Model terms. Linear parametric additive terms
  • Additive smoothing terms
  • Random effects
  • Model selection and diagnostics. Model selection techniques
  • Diagnostics
  • Applications. Centril estimation
  • Further applications