Flexible regression and smoothing : using GAMLSS in R

This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. GAMLSS allows any pa...

Description complète

Détails bibliographiques
Auteurs principaux : Stasinopoulos Mikis D. (Auteur), Rigby Robert A. (Auteur), Heller Gillian (Auteur), Voudouris Vlasios (Auteur), De Bastiani Fernanda (Auteur)
Format : Livre
Langue : anglais
Titre complet : Flexible regression and smoothing : using GAMLSS in R / Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller... [et al.]
Publié : Boca Raton : CRC Press/Taylor & Francis Group , C 2017
Description matérielle : 1 vol. (xxii-549 pages)
Collection : Chapman & Hall/CRC the R series (Print)
Sujets :
LEADER 03388cam a2200637 4500
001 PPN23670575X
003 http://www.sudoc.fr/23670575X
005 20240605061700.0
010 |a 978-1-138-19790-9  |b rel. 
020 |a US  |b 2016051819 
020 |a GB  |b B775449 
035 |a (OCoLC)1041407788 
035 |a ocn960844231 
035 |z ocm957681313 
035 |z ocm1063664730 
035 |a AU@000058940330 
035 |a UKMGB018330475 
073 1 |a 9781138197909 
100 |a 20190627h20172017k y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a US 
105 |a a a 001yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Flexible regression and smoothing  |e using GAMLSS in R  |f Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller... [et al.] 
214 0 |a Boca Raton  |c CRC Press/Taylor & Francis Group 
214 4 |d C 2017 
215 |a 1 vol. (xxii-549 pages)  |c fig.  |d 27 cm 
225 0 |a Chapman & Hall/CRC the R series 
314 |a Autres contributions (auteurs) : Vlasios Voudouris, Fernandan de Bastiani 
320 |a Bibliogr. p. 523-542. Index. 
330 |a This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. GAMLSS allows any parametric distribution for the response variable and modelling all the parameters (location, scale and shape) of the distribution as linear or smooth functions of explanatory variables. This book provides a broad overview of GAMLSS methodology and how it is implemented in R. It includes a comprehensive collection of real data examples, integrated code, and figures to illustrate the methods, and is supplemented by a website with code, data and additional materials.-- 
359 2 |b Introduction to models and packages. Why GAMLSS?  |b Introduction to the gamlss packages  |b Algorithms, functions and inference. The algorithms  |b The gamlss() function  |b Inference and prediction  |b Distributions. The GAMLSS family of distributions  |b Finite mixture distributions  |b Model terms. Linear parametric additive terms  |b Additive smoothing terms  |b Random effects  |b Model selection and diagnostics. Model selection techniques  |b Diagnostics  |b Applications. Centril estimation  |b Further applications 
410 | |0 182866831  |t Chapman & Hall/CRC the R series (Print)  |x 2470-3729 
605 |3 PPN08080859X  |a R  |n logiciel  |2 rameau 
606 |3 PPN027674134  |a Modèles linéaires (statistique)  |2 rameau 
606 |3 PPN050621637  |a Lissage (statistique)  |2 rameau 
606 |3 PPN02739381X  |a Analyse de régression  |2 rameau 
676 |a 519.5/36028553  |v 23 
680 |a QA278.2  |b .F585 2017 
686 |a 62-XX  |c 2020  |2 msc 
701 1 |3 PPN236707094  |a Stasinopoulos  |b Mikis D.  |4 070 
701 1 |3 PPN23670723X  |a Rigby  |b Robert A.  |4 070 
701 1 |3 PPN130786063  |a Heller  |b Gillian  |4 070 
701 1 |3 PPN236707922  |a Voudouris  |b Vlasios  |4 070 
701 1 |3 PPN236708066  |a De Bastiani  |b Fernanda  |4 070 
801 3 |a FR  |b Abes  |c 20231114  |g AFNOR 
801 0 |b DLC  |g AACR2 
801 2 |b BTCTA  |g AACR2 
930 |5 441092208:803394268  |b 441092208  |j u 
979 |a CCFA 
998 |a 952312