|
|
|
|
LEADER |
03388cam a2200637 4500 |
001 |
PPN23670575X |
003 |
http://www.sudoc.fr/23670575X |
005 |
20240605061700.0 |
010 |
|
|
|a 978-1-138-19790-9
|b rel.
|
020 |
|
|
|a US
|b 2016051819
|
020 |
|
|
|a GB
|b B775449
|
035 |
|
|
|a (OCoLC)1041407788
|
035 |
|
|
|a ocn960844231
|
035 |
|
|
|z ocm957681313
|
035 |
|
|
|z ocm1063664730
|
035 |
|
|
|a AU@000058940330
|
035 |
|
|
|a UKMGB018330475
|
073 |
|
1 |
|a 9781138197909
|
100 |
|
|
|a 20190627h20172017k y0frey0103 ba
|
101 |
0 |
|
|a eng
|2 639-2
|
102 |
|
|
|a US
|
105 |
|
|
|a a a 001yy
|
106 |
|
|
|a r
|
181 |
|
|
|6 z01
|c txt
|2 rdacontent
|
181 |
|
1 |
|6 z01
|a i#
|b xxxe##
|
182 |
|
|
|6 z01
|c n
|2 rdamedia
|
182 |
|
1 |
|6 z01
|a n
|
183 |
|
|
|6 z01
|a nga
|2 RDAfrCarrier
|
200 |
1 |
|
|a Flexible regression and smoothing
|e using GAMLSS in R
|f Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller... [et al.]
|
214 |
|
0 |
|a Boca Raton
|c CRC Press/Taylor & Francis Group
|
214 |
|
4 |
|d C 2017
|
215 |
|
|
|a 1 vol. (xxii-549 pages)
|c fig.
|d 27 cm
|
225 |
0 |
|
|a Chapman & Hall/CRC the R series
|
314 |
|
|
|a Autres contributions (auteurs) : Vlasios Voudouris, Fernandan de Bastiani
|
320 |
|
|
|a Bibliogr. p. 523-542. Index.
|
330 |
|
|
|a This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. GAMLSS allows any parametric distribution for the response variable and modelling all the parameters (location, scale and shape) of the distribution as linear or smooth functions of explanatory variables. This book provides a broad overview of GAMLSS methodology and how it is implemented in R. It includes a comprehensive collection of real data examples, integrated code, and figures to illustrate the methods, and is supplemented by a website with code, data and additional materials.--
|
359 |
2 |
|
|b Introduction to models and packages. Why GAMLSS?
|b Introduction to the gamlss packages
|b Algorithms, functions and inference. The algorithms
|b The gamlss() function
|b Inference and prediction
|b Distributions. The GAMLSS family of distributions
|b Finite mixture distributions
|b Model terms. Linear parametric additive terms
|b Additive smoothing terms
|b Random effects
|b Model selection and diagnostics. Model selection techniques
|b Diagnostics
|b Applications. Centril estimation
|b Further applications
|
410 |
|
| |
|0 182866831
|t Chapman & Hall/CRC the R series (Print)
|x 2470-3729
|
605 |
|
|
|3 PPN08080859X
|a R
|n logiciel
|2 rameau
|
606 |
|
|
|3 PPN027674134
|a Modèles linéaires (statistique)
|2 rameau
|
606 |
|
|
|3 PPN050621637
|a Lissage (statistique)
|2 rameau
|
606 |
|
|
|3 PPN02739381X
|a Analyse de régression
|2 rameau
|
676 |
|
|
|a 519.5/36028553
|v 23
|
680 |
|
|
|a QA278.2
|b .F585 2017
|
686 |
|
|
|a 62-XX
|c 2020
|2 msc
|
701 |
|
1 |
|3 PPN236707094
|a Stasinopoulos
|b Mikis D.
|4 070
|
701 |
|
1 |
|3 PPN23670723X
|a Rigby
|b Robert A.
|4 070
|
701 |
|
1 |
|3 PPN130786063
|a Heller
|b Gillian
|4 070
|
701 |
|
1 |
|3 PPN236707922
|a Voudouris
|b Vlasios
|4 070
|
701 |
|
1 |
|3 PPN236708066
|a De Bastiani
|b Fernanda
|4 070
|
801 |
|
3 |
|a FR
|b Abes
|c 20231114
|g AFNOR
|
801 |
|
0 |
|b DLC
|g AACR2
|
801 |
|
2 |
|b BTCTA
|g AACR2
|
930 |
|
|
|5 441092208:803394268
|b 441092208
|j u
|
979 |
|
|
|a CCFA
|
998 |
|
|
|a 952312
|