Lévy matters : III Lévy-type processes construction, approximation and sample path properties

This volume presents recent developments in the area of Lévy-type processes and more general stochastic processes that behave locally like a Lévy process. Although written in a survey style, quite a few results are extensions of known theorems, and others are completely new. The focus is on the symb...

Description complète

Détails bibliographiques
Auteurs principaux : Böttcher Björn (Auteur), Schilling René L. (Auteur), Wang Jian (Auteur)
Format : Livre
Langue : anglais
Titre complet : Lévy matters. III, Lévy-type processes : construction, approximation and sample path properties / Björn Böttcher, René Schilling, Jian Wang.
Édition : 1st ed. 2013.
Publié : Cham : Springer International Publishing , [20..]
Cham : Springer Nature
Collection : Lévy Matters, A Subseries on Lévy Processes ; 2099
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Contient une courte biographie de Paul Lévy par Jean Jacod
A Primer on Feller Semigroups and Feller Processes. Feller Generators and Symbols. Construction of Feller Processes. Transformations of Feller Processes. Sample Path Properties. Global Properties. Approximation. Open Problems. References. Index
Sujets :
Documents associés : Lévy-type processes: Lévy matters
Description
Résumé : This volume presents recent developments in the area of Lévy-type processes and more general stochastic processes that behave locally like a Lévy process. Although written in a survey style, quite a few results are extensions of known theorems, and others are completely new. The focus is on the symbol of a Lévy-type process: a non-random function which is the counterpart of the characteristic exponent of a Lévy process. The class of stochastic processes which can be associated with a symbol is characterized, various schemes constructing a stochastic process from a given symbol are discussed, and it is shown how one can use the symbol in order to describe the sample path properties of the underlying process. Lastly, the symbol is used to approximate and simulate Levy-type processes. This is the third volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject with special emphasis on the non-Brownian world
Variantes de titre : Lévy-type processes : construction, approximation and sample path properties
Note sur la collection : ISSN et numérotation dans la collection principale : 1617-9692 ; 2099
Bibliographie : Bibliogr.p. 181-195 de l'édition imprimée. Index
ISBN : 978-3-319-02684-8
DOI : 10.1007/978-3-319-02684-8