Diffeomorphisms of elliptic 3-manifolds
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) S...
Auteurs principaux : | , , , |
---|---|
Autres auteurs : | |
Format : | Livre |
Langue : | anglais |
Titre complet : | Diffeomorphisms of elliptic 3-manifolds / Sungbok Hong, John Kalliongis, Darryl McCullough... [et al.] |
Édition : | 1st ed. 2012. |
Publié : |
Berlin, Heidelberg :
Springer Berlin Heidelberg
, [20..] Cham : Springer Nature |
Collection : | Lecture notes in mathematics (Internet) ; 2055 |
Accès en ligne : |
Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr |
Note sur l'URL : | Accès sur la plateforme de l'éditeur Accès sur la plateforme Istex |
Condition d'utilisation et de reproduction : | Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 |
Contenu : | 1 Elliptic 3-manifolds and the Smale Conjecture. 2 Diffeomorphisms and Embeddings of Manifolds. 3 The Method of Cerf and Palais. 4 Elliptic 3-manifolds Containing One-sided Klein Bottles. 5 Lens Spaces |
Sujets : | |
Documents associés : | Autre format:
Diffeomorphisms of elliptic 3-manifolds Autre format: Diffeomorphisms of Elliptic 3-Manifolds Autre format: Diffeomorphisms of elliptic 3-manifolds |
LEADER | 05257clm a2200829 4500 | ||
---|---|---|---|
001 | PPN165115408 | ||
003 | http://www.sudoc.fr/165115408 | ||
005 | 20241001154900.0 | ||
010 | |a 978-3-642-31564-0 | ||
017 | 7 | 0 | |a 10.1007/978-3-642-31564-0 |2 DOI |
035 | |a (OCoLC)833296257 | ||
035 | |a Springer978-3-642-31564-0 | ||
035 | |a SPRINGER_EBOOKS_LN_PLURI_10.1007/978-3-642-31564-0 | ||
035 | |a Springer-11649-978-3-642-31564-0 | ||
100 | |a 20121031f20 k y0frey0103 ba | ||
101 | 0 | |a eng |2 639-2 | |
102 | |a DE | ||
105 | |a a a 001yy | ||
135 | |a dr||||||||||| | ||
181 | |6 z01 |c txt |2 rdacontent | ||
181 | 1 | |6 z01 |a i# |b xxxe## | |
182 | |6 z01 |c c |2 rdamedia | ||
182 | 1 | |6 z01 |a b | |
183 | |6 z01 |a ceb |2 RDAfrCarrier | ||
200 | 1 | |a Diffeomorphisms of elliptic 3-manifolds |f Sungbok Hong, John Kalliongis, Darryl McCullough... [et al.] | |
205 | |a 1st ed. 2012. | ||
214 | 0 | |a Berlin, Heidelberg |c Springer Berlin Heidelberg | |
214 | 2 | |a Cham |c Springer Nature |d [20..] | |
225 | 2 | |a Lecture notes in mathematics |x 1617-9692 |v 2055 | |
303 | |a L'impression du document génère 162 p. | ||
314 | |a Autres contributions : J. Hyam Rubinstein (co-auteur) | ||
320 | |a Bibliogr. Index | ||
327 | 1 | |a 1 Elliptic 3-manifolds and the Smale Conjecture |a 2 Diffeomorphisms and Embeddings of Manifolds |a 3 The Method of Cerf and Palais |a 4 Elliptic 3-manifolds Containing One-sided Klein Bottles |a 5 Lens Spaces | |
330 | |a This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle.The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included | ||
371 | 0 | |a Accès en ligne pour les établissements français bénéficiaires des licences nationales | |
371 | 0 | |a Accès soumis à abonnement pour tout autre établissement | |
371 | 1 | |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 | |
410 | | | |0 128395303 |t Lecture notes in mathematics (Internet) |x 1617-9692 |v 2055 | |
452 | | | |0 164787070 |t Diffeomorphisms of elliptic 3-manifolds |f Sungbok Hong, John Kalliongis, Darryl McCullough... [et al.] |c Heidelberg |n Springer Verlag |d 2012 |p 1 vol. (X-155 p.) |s Lecture notes in mathematics |y 978-3-642-31563-3 | |
452 | | | |t Diffeomorphisms of Elliptic 3-Manifolds |b Texte imprimé |y 9783642315657 | |
452 | | | |0 164787070 |t Diffeomorphisms of elliptic 3-manifolds |f Sungbok Hong, John Kalliongis, Darryl McCullough... [et al.] |c Heidelberg |n Springer Verlag |d 2012 |p 1 vol. (X-155 p.) |s Lecture notes in mathematics |y 978-3-642-31563-3 | |
606 | |3 PPN031686494 |a Difféomorphismes |2 rameau | ||
606 | |3 PPN031442773 |a Variétés topologiques à 3 dimensions |2 rameau | ||
610 | 1 | |a Mathematics | |
610 | 2 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
610 | 1 | |a Manifolds and Cell Complexes (incl DiffTopology) | |
615 | |a @Mathematics and Statistics |n 11649 |2 Springer | ||
676 | |a 514.34 |v 23 | ||
680 | |a QA613-613.8 | ||
680 | |a QA613.6-613.66 | ||
686 | |a 57M99 |c 2010 |2 msc | ||
686 | |a 57S10 |c 2010 |2 msc | ||
686 | |a 58D05 |c 2010 |2 msc | ||
686 | |a 58D29 |c 2010 |2 msc | ||
700 | 1 | |a Hong |b Sungbok |4 070 | |
701 | 1 | |a Kalliongis |b John |4 070 | |
701 | 1 | |a McCullough |b Darryl |4 070 | |
701 | 1 | |a Rubinstein |b J Hyam |4 070 | |
702 | 1 | |3 PPN164791132 |a Hong |b Sungbok |f 19..-.... |4 205 | |
702 | 1 | |3 PPN164791469 |a Kalliongis |b John |f 19..-.... |4 205 | |
702 | 1 | |3 PPN081832389 |a McCullough |b Darryl |f 1951-.... |4 205 | |
702 | 1 | |3 PPN176930272 |a Rubinstein |b Hyam |f 1948-.... |4 205 | |
801 | 3 | |a FR |b Abes |c 20231016 |g AFNOR | |
801 | 1 | |a DE |b Springer |c 20211020 |g AACR2 | |
856 | 4 | |q PDF |u https://doi.org/10.1007/978-3-642-31564-0 |z Accès sur la plateforme de l'éditeur | |
856 | 4 | |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-GBKZT3RP-1 |z Accès sur la plateforme Istex | |
856 | 4 | |5 441099901:830852867 |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/978-3-642-31564-0 | |
915 | |5 441099901:830852867 |b SPRING13-00364 | ||
930 | |5 441099901:830852867 |b 441099901 |j g | ||
991 | |5 441099901:830852867 |a Exemplaire créé en masse par ITEM le 30-09-2024 16:11 | ||
997 | |a NUM |b SPRING13-00364 |d NUMpivo |e EM |s d | ||
998 | |a 977988 |