Fracture mechanics of ceramics : active materials, nanoscale materials, composites, glass and fundamentals

The 8th International Symposium on fracture mechanics of ceramics was held in on the campus of the University of Houston, Houston, TX, USA, on February 25-28, 2003. With the natural maturing of the fields of structural ceramics, this symposium focused on nano-scale materials, composites, thin films...

Description complète

Enregistré dans:
Détails bibliographiques
Autres auteurs : Bradt Richard Carl (Directeur de publication), Munz Dietrich (Directeur de publication), Sakai Mototsugu (Directeur de publication), White Kenneth W. (Directeur de publication)
Format : Livre
Langue : anglais
Titre complet : Fracture mechanics of ceramics : active materials, nanoscale materials, composites, glass and fundamentals / edited by R. C. Bradt, D. Munz, M. Sakai, K. W. White
Édition : 1st ed. 2005
Publié : Boston, MA : Springer US , [20..]
Cham : Springer Nature
Collection : Fracture Mechanics of Ceramics, Active Materials, Nanoscale Materials, Composites, Glass and Fundamentals ; 14
Titre de l'ensemble : Fracture Mechanics of Ceramics, Active Materials, Nanoscale Materials, Composites, Glass and Fundamentals vol. 14
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Contact Mechanics. Atomic Force Microscopy at Ultrasonic Frequencies. Indentation Size Effect on the Hardness of Zirconia Polycrystals. Indentation Fracture, Acoustic Emission and Modelling of the Mechanical Properties of Thin Ceramic Coatings. Nanoindentation, Nanoscratch and Nanoimpact Testing of Silicon-Based Materials with Nanostructured Surfaces. Microstructural Control of Indentation Crack Extension under Externally Applied Stress. Instrumented Hardness Test on Alumina Ceramics and Single Crystal with Spherical Indenter. Glass. Controlling the Fragmentation Behavior of Stressed Glass. Elasto-Plastic Behavior of Glassy Carbon and Silica Glass by Nano-Indentation with Spherical Tipped Indenter. Scratch Test for Evaluation of Surface Damage in Glass. Shear Driven Damage and Internal Friction in Indentation Loading of a Glass-Ceramic. Indentation and Scratching of Glass: Load, Composition and Temperature Effects. Effects of Tin on the Physical Properties and Crack Growth in Soda-Lime-Silica Float Glass. Indentation Size Effect for Glasses: Yes, There is a Fracture Contribution. Fracture of Nano-Scale Materials. Slow Crack Propagation in Ceramics at the Nano- and Micro-Scale: Effect of the Microstructure. Toughening and Strengthening Mechanisms in Nanocomposites Based on Dislocation Activity. Composites. Creep Behavior and Mechanism for CMCs with Continuous Ceramic Fibers. Strain Accumulation and Damage Evolution During Creep of SiCf/SiC Composites. Modelling Multilayer Damage in Cross-ply Ceramic Matrix Composites. Quantification of Toughness Increase Due to Metal Particles in Glass Matrix Composites. Fracture Resistance of Hybrid Glass Matrix Composite and Its Degradation Due to Thermal Ageing and Thermal Shock. Creep Investigation of SiCf-SiBC Composites. Fracture Toughness of BaTiO3-MgO Composites Sintered by Spark Plasma Sintering. Fracture Toughness of BaTiO3 and BaTiO3-Al2O3 Composite under Electric Field. Room Temperature Post-Fracture Tensile (PFT) Study of Two Fiber-Reinforced Ceramic Matrix Composites with a Strong Fiber/Matrix Interface. A FE Model of Carbon/Carbon Composite Fracture. Fracture Fundamentals. Tailoring the Composition of Self-Reinforced Silicon Nitride Ceramics to Enhance Mechanical Behavior. Nonlinear Fracture of a Polycrystalline Graphite Size-Effect Law and Irwin s Similarity. Fragmentation of Ceramics in Rapid Expansion Mode. Experimental Approach to Microfracture Process of Ceramics under Thermal Shock. Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure. Investigation of Crack Growth Process in Dense Hydroxyapatite Using the Double Torsion Method. Crack Propagation Behavior of Alumina with Different Grain Sizes under Static and Cyclic Fatigue. Effects of Pore/Grain-Size Interaction and Porosity on the Fracture of Electroceramics. Fracture of Coatings. Fracture Behaviour of Plasma Sprayed Thermal Barrier Coatings. Particle Impact Damage and Point Load-Induced Fracture Behavior in Zirconia Plasma Spray Coating Film. Model I, Mode II, and Mixed-Mode Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures. Ferroelectric Materials. Modeling of Fracture in Ferroelastic Ceramics. Strength and Reliability of Lead Zirconate Titanate Ceramics. Reliability Prediction, Standardization and Design. Standard Reference Material 2100: Fracture Toughness of Ceramics. Measuring the Real Fracture Toughness of Ceramics: ASTM C 1421. Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading. Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data. On Integrity of Flexible Displays. Fracture of Conductive Cracks in Poled and Depoled PZT-4 Ceramics. Increasing Resistance to Low Temperature Ageing Degradation of Y-TZP by Surface Modification
Sujets :
Documents associés : Autre format: Fracture mechanics of ceramics
LEADER 07621clm a2200673 4500
001 PPN149036019
003 http://www.sudoc.fr/149036019
005 20241002160300.0
010 |a 978-0-387-28920-5 
017 7 0 |a 10.1007/978-0-387-28920-5  |2 DOI 
035 |a (OCoLC)758804500 
035 |a Springer978-0-387-28920-5 
035 |a SPRINGER_EBOOKS_LN_PLURI_10.1007/978-0-387-28920-5 
035 |a Springer-11644-978-0-387-28920-5 
100 |a 20110106f20 u y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a US 
135 |a dr||||||||||| 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c c  |2 rdamedia 
182 1 |6 z01  |a b 
183 |6 z01  |a ceb  |2 RDAfrCarrier 
200 1 |a Fracture mechanics of ceramics  |e active materials, nanoscale materials, composites, glass and fundamentals  |f edited by R. C. Bradt, D. Munz, M. Sakai, K. W. White 
205 |a 1st ed. 2005 
214 0 |a Boston, MA  |c Springer US 
214 2 |a Cham  |c Springer Nature  |d [20..] 
225 1 |a Fracture Mechanics of Ceramics, Active Materials, Nanoscale Materials, Composites, Glass and Fundamentals  |v 14 
327 1 |a Contact Mechanics  |a Atomic Force Microscopy at Ultrasonic Frequencies  |a Indentation Size Effect on the Hardness of Zirconia Polycrystals  |a Indentation Fracture, Acoustic Emission and Modelling of the Mechanical Properties of Thin Ceramic Coatings  |a Nanoindentation, Nanoscratch and Nanoimpact Testing of Silicon-Based Materials with Nanostructured Surfaces  |a Microstructural Control of Indentation Crack Extension under Externally Applied Stress  |a Instrumented Hardness Test on Alumina Ceramics and Single Crystal with Spherical Indenter  |a Glass  |a Controlling the Fragmentation Behavior of Stressed Glass  |a Elasto-Plastic Behavior of Glassy Carbon and Silica Glass by Nano-Indentation with Spherical Tipped Indenter  |a Scratch Test for Evaluation of Surface Damage in Glass  |a Shear Driven Damage and Internal Friction in Indentation Loading of a Glass-Ceramic  |a Indentation and Scratching of Glass: Load, Composition and Temperature Effects  |a Effects of Tin on the Physical Properties and Crack Growth in Soda-Lime-Silica Float Glass  |a Indentation Size Effect for Glasses: Yes, There is a Fracture Contribution  |a Fracture of Nano-Scale Materials  |a Slow Crack Propagation in Ceramics at the Nano- and Micro-Scale: Effect of the Microstructure  |a Toughening and Strengthening Mechanisms in Nanocomposites Based on Dislocation Activity  |a Composites  |a Creep Behavior and Mechanism for CMCs with Continuous Ceramic Fibers  |a Strain Accumulation and Damage Evolution During Creep of SiCf/SiC Composites  |a Modelling Multilayer Damage in Cross-ply Ceramic Matrix Composites  |a Quantification of Toughness Increase Due to Metal Particles in Glass Matrix Composites  |a Fracture Resistance of Hybrid Glass Matrix Composite and Its Degradation Due to Thermal Ageing and Thermal Shock  |a Creep Investigation of SiCf-SiBC Composites  |a Fracture Toughness of BaTiO3-MgO Composites Sintered by Spark Plasma Sintering  |a Fracture Toughness of BaTiO3 and BaTiO3-Al2O3 Composite under Electric Field  |a Room Temperature Post-Fracture Tensile (PFT) Study of Two Fiber-Reinforced Ceramic Matrix Composites with a Strong Fiber/Matrix Interface  |a A FE Model of Carbon/Carbon Composite Fracture  |a Fracture Fundamentals  |a Tailoring the Composition of Self-Reinforced Silicon Nitride Ceramics to Enhance Mechanical Behavior  |a Nonlinear Fracture of a Polycrystalline Graphite Size-Effect Law and Irwin s Similarity  |a Fragmentation of Ceramics in Rapid Expansion Mode  |a Experimental Approach to Microfracture Process of Ceramics under Thermal Shock  |a Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure  |a Investigation of Crack Growth Process in Dense Hydroxyapatite Using the Double Torsion Method  |a Crack Propagation Behavior of Alumina with Different Grain Sizes under Static and Cyclic Fatigue  |a Effects of Pore/Grain-Size Interaction and Porosity on the Fracture of Electroceramics  |a Fracture of Coatings  |a Fracture Behaviour of Plasma Sprayed Thermal Barrier Coatings  |a Particle Impact Damage and Point Load-Induced Fracture Behavior in Zirconia Plasma Spray Coating Film  |a Model I, Mode II, and Mixed-Mode Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures  |a Ferroelectric Materials  |a Modeling of Fracture in Ferroelastic Ceramics  |a Strength and Reliability of Lead Zirconate Titanate Ceramics  |a Reliability Prediction, Standardization and Design  |a Standard Reference Material 2100: Fracture Toughness of Ceramics  |a Measuring the Real Fracture Toughness of Ceramics: ASTM C 1421  |a Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading  |a Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data  |a On Integrity of Flexible Displays  |a Fracture of Conductive Cracks in Poled and Depoled PZT-4 Ceramics  |a Increasing Resistance to Low Temperature Ageing Degradation of Y-TZP by Surface Modification 
330 |a The 8th International Symposium on fracture mechanics of ceramics was held in on the campus of the University of Houston, Houston, TX, USA, on February 25-28, 2003. With the natural maturing of the fields of structural ceramics, this symposium focused on nano-scale materials, composites, thin films and coatings as well as glass. The symposium also addressed new issues on fundamentals of fracture mechanics and contact mechanics, and a session on reliability and standardization 
371 0 |a Accès en ligne pour les établissements français bénéficiaires des licences nationales 
371 0 |a Accès soumis à abonnement pour tout autre établissement 
371 1 |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales  |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 
410 | |t Fracture Mechanics of Ceramics, Active Materials, Nanoscale Materials, Composites, Glass and Fundamentals  |v 14 
452 | |0 113133448  |t Fracture mechanics of ceramics  |o active materials, nanoscale materials, composites, glass, and fundamentals  |f edited by R.C. Bradt,... D. Munz,... M. Sakai,... [et al.]  |c New York  |n Springer  |d 2005  |p 1 vol. (IX-636 p.)  |s Fracture mechanics of ceramics  |y 0-387-24134-5 
610 2 |a Continuum Mechanics and Mechanics of Materials 
610 2 |a Ceramics, Glass, Composites, Natural Methods 
610 1 |a Material Science 
610 1 |a Ceramics, Glass, Composites, Natural Materials. 
610 2 |a Solid Mechanics. 
615 |a @Chemistry and Materials Science  |n 11644  |2 Springer 
676 |a 620.14  |v 23 
680 |a TP807-823 
680 |a TA418.9.C6 
702 1 |3 PPN059900504  |a Bradt  |b Richard Carl  |f 1938-2019  |4 651 
702 1 |3 PPN060844612  |a Munz  |b Dietrich  |f 19..-....  |4 651 
702 1 |3 PPN091877849  |a Sakai  |b Mototsugu  |4 651 
702 1 |3 PPN258933259  |a White  |b Kenneth W.  |f 19..-....  |4 651 
801 3 |a FR  |b Abes  |c 20231012  |g AFNOR 
801 1 |a DE  |b Springer  |c 20200821  |g AACR2 
856 4 |q PDF  |u https://doi.org/10.1007/978-0-387-28920-5  |z Accès sur la plateforme de l'éditeur 
856 4 |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-B0X0LRJH-J  |z Accès sur la plateforme Istex 
856 4 |5 441099901:83092681X  |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/978-0-387-28920-5 
915 |5 441099901:83092681X  |b SPRING4-00051 
930 |5 441099901:83092681X  |b 441099901  |j g 
979 |a NUM 
991 |5 441099901:83092681X  |a Exemplaire créé en masse par ITEM le 01-10-2024 15:44 
997 |a NUM  |b SPRING4-00051  |d NUMpivo  |e EM  |s d 
998 |a 980448