Contribution au développement d'une méthode SPH pour la simulation numérique des interactions houle-structure

Recent development in numerical methods together with the increase of computational power available have allowed the simulations of more and more complex flows. However interfacial flows remain a difficult task, especially when breaking, interface fragmentation or reconnection occurs. Smoothed Parti...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal : Guilcher Pierre-Michel (Auteur)
Collectivités auteurs : Université de Nantes 1962-2021 (Organisme de soutenance), Université de Nantes Faculté des sciences et des techniques (Autre partenaire associé à la thèse), Centrale Nantes 1991-.... (Autre partenaire associé à la thèse), École doctorale Sciences pour l'ingénieur, Géosciences, Architecture Nantes (Ecole doctorale associée à la thèse), Laboratoire de recherche en hydrodynamique, énergétique et environnement atmosphérique Nantes (Laboratoire associé à la thèse)
Autres auteurs : Clément Alain (Directeur de thèse), Allessandrini Bertrand (Directeur de thèse)
Format : Thèse ou mémoire
Langue : français
Titre complet : Contribution au développement d'une méthode SPH pour la simulation numérique des interactions houle-structure / Pierre-Michel Guilcher; sous la direction d'Alain Clément; co-encadrant Bertrand Allessandrini
Publié : 2008
Description matérielle : 1 vol. (165 f.)
Note de thèse : Thèse doctorat : Dynamique des fluides et des transferts : Nantes : 2008
Disponibilité : Publication autorisée par le jury
Sujets :
Description
Résumé : Recent development in numerical methods together with the increase of computational power available have allowed the simulations of more and more complex flows. However interfacial flows remain a difficult task, especially when breaking, interface fragmentation or reconnection occurs. Smoothed Particle Hydrodynamics, being meshless and Lagrangian, allows to solve simply and elegantly such problems. A SPH based numerical method has been precedently developped in the Fluid Mechanics Laboratory, but its application to wave propagation problem shows weaknesses compared to other numerical methods. In this PhD the initial solver has been improved in order to solve correctly the wave propagation problem. A particular care was taken concerning the theoretical aspects of the method. In particular the introduction of an exact Riemann solver has noticeably increased the numerical stability. This tool allows to adjust automatically the stabilisation required. The use of renormalization together with a weak formulation of the problem help to solve the characteristic lack of consistancy of the SPH method. Extension to free surface flows has been proposed. The use of smoothing length tensor in place of the classical unidimensional smoothing length allows simulations with spatially variable mesh size. Comparaison of obtained results with both experimental results and theoretical results in a variety of test cases such as dam breaking, Riemann problem, deformation of a patch of fluid, wave propagation, shows good agreement, confirming the contribution of the new improvments. Moreover, a new hybrid scheme is presented for specific problems with wave propagation. This new hybrid method relies on the combination of spectral methods and the SPH solver. The wave propagation problem is first solved accuratly with a spectral method. Then the incident wave train is introduced in a consistant way into the SPH solver. First results seem to be encouraging, showing a significantly decrease in cpu time. Thanks to code organization, three dimensional viscous simulations are possible with minimum adaptation.
Variantes de titre : Contribution to the development of a SPH method for the numerical simulation of wave-body interactions
Notes : Partenaire de recherche : Laboratoire de mécanique des fluides, Nantes
Bibliographie : Bibliogr. f. 163-165