Applied Stochastic Control of Jump Diffusions

The main purpose of the book is to give a rigorous, yet mostly nontechnical, introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. The types of control problems covered include classical stochastic con...

Description complète

Détails bibliographiques
Auteurs principaux : Øksendal Bernt Karsten (Auteur), Sulem Agnès (Auteur)
Format : Livre
Langue : anglais
Titre complet : Applied Stochastic Control of Jump Diffusions / by Bernt Øksendal, Agnès Sulem.
Édition : 2nd ed. 2007.
Publié : Berlin, Heidelberg : Springer Berlin Heidelberg , [20..]
Cham : Springer Nature
Collection : Universitext (Berlin. Internet)
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Contient des exercices
Sujets :
Documents associés : Autre format: Applied stochastic control of jump diffusions
Autre format: Applied Stochastic Control of Jump Diffusions
Autre format: Applied stochastic control of jump diffusions
Description
Résumé : The main purpose of the book is to give a rigorous, yet mostly nontechnical, introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. The types of control problems covered include classical stochastic control, optimal stopping, impulse control and singular control. Both the dynamic programming method and the maximum principle method are discussed, as well as the relation between them. Corresponding verification theorems involving the Hamilton-Jacobi Bellman equation and/or (quasi-)variational inequalities are formulated. There are also chapters on the viscosity solution formulation and numerical methods. The text emphasises applications, mostly to finance. All the main results are illustrated by examples and exercises appear at the end of each chapter with complete solutions. This will help the reader understand the theory and see how to apply it. The book assumes some basic knowledge of stochastic analysis, measure theory and partial differential equations. In the 2nd edition there is a new chapter on optimal control of stochastic partial differential equations driven by Lévy processes. There is also a new section on optimal stopping with delayed information. Moreover, corrections and other improvements have been made
ISBN : 978-3-540-69826-5
DOI : 10.1007/978-3-540-69826-5