Functional Materials and Biomaterials

Hyperbranched polymers have emerged as a new class of macromolecules that show architectural beauty and multifaceted functionality of d- drimers while enjoying the ease of being prepared by simple, sing- step reaction procedures. A number of strategies have been developed for the synthesis of hyperb...

Description complète

Enregistré dans:
Détails bibliographiques
Autres auteurs : Abe Akihiro (Directeur de publication), Lucas Patrice (Directeur de publication), Robin Jean-Jacques (Directeur de publication), Tang Ben Zhong (Directeur de publication)
Format : Livre
Langue : anglais
Titre complet : Functional Materials and Biomaterials
Édition : 1st ed. 2007.
Publié : Berlin, Heidelberg : Springer Berlin Heidelberg , [20..]
Cham : Springer Nature
Collection : Advances in polymer science (Internet) ; 209
Titre de l'ensemble : Advances in Polymer Science vol. 209
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : M. Haeussler, B.Z. Tang: Functional Hyperbranched Macromolecules Constructed from Acetylenic Triple-Bond Building Blocks. A.R. Esker, C. Kim and;H. Yu: Polymer Monolayer Dynamics. P. Lucas, J.-J. Robin: Silicone Based Polymer Blends: An Overview of the Materials and Processes. X.D. Liu, M. Yamada, M. Matsunaga and N. Nishi: Functional Materials Derived from DNA. D.-A. Wang: Engineering Blood-Contact Biomaterials by "H-Bond Grafting" Surface Modification
Sujets :
Documents associés : Autre format: Functional materials and biomaterials
Description
Résumé : Hyperbranched polymers have emerged as a new class of macromolecules that show architectural beauty and multifaceted functionality of d- drimers while enjoying the ease of being prepared by simple, sing- step reaction procedures. A number of strategies have been developed for the synthesis of hyperbranched polymers. The commonly adopted - proach is self-condensation polymerization of AB -type monomers with x x?2 where A and B are mutually reactive functional groups, dating back to the theoretical work of Flory in the early 1950s [1]. Because of the limited commercial availability and dif?cult synthetic access to multifu- tional monomers bearing multiple, mutually reactive groups, alternative approaches suchas copolymerizations ofA monomers with B comonomers 2 x (x?3) have been developed [2 7]. Other polymerization reactions including self-condensing vinyl polymerizations initiated by cationic [8] and radical catalysts [9,10] and ring-opening multibranching polymerizations [11 15] have been explored, mainly for the synthesis of non-conjugated hyp- branched polymers [16 18]. Hyperbranched macromolecules have been constructed from various functional groups, among which, carbon-carbon triple-bond functionality uniquely stands out because it offers ready access to hyperbranched conju- tive macromolecules. Being unsaturated, it accommodates various addition reactions. In comparison to vinyl and alkyl protons, the acetylenic proton is most acidic (pK = 26; cf. , pK =45forethyleneandpK = 62 for ethane), a a a thus enabling facile substitution and coupling reactions
Variantes de titre : With contributions by numerous experts
ISBN : 978-3-540-71509-2
DOI : 10.1007/978-3-540-71509-2