Metric Structures for Riemannian and Non-Riemannian Spaces

Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory. The new wave began with seminal papers by Svarc and Milnor on...

Description complète

Détails bibliographiques
Auteur principal : Gromov Mikhail (Auteur)
Autres auteurs : Katz Mikhail Gersh (Collaborateur), Pansu Pierre (Collaborateur), Semmes Stephen (Collaborateur), Bates Sean Michael (Traducteur)
Format : Livre
Langue : anglais
Titre complet : Metric Structures for Riemannian and Non-Riemannian Spaces / Misha Gromov, Pierre Pansu; with appendices by M. Katz, P. Pansu, and S. Semmes; english translation by Sean Michael Bates
Publié : Boston, MA : Birkhäuser Boston , [20..]
Cham : Springer Nature
Collection : Modern Birkhäuser Classics
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Reproduction de : Numérisation de la réimpression de l'édition corrigée datant de 2001
Contenu : Preface to the French Edition. Preface to the English Edition. Introduction: Metrics Everywhere. Length Structures: Path Metric Spaces. Degree and Dilatation. Metric Structures on Families of Metric Spaces. Convergence and Concentration of Metrics and Measures. Loewner Rediscovered. Manifolds with Bounded Ricci Curvature. Isoperimetric Inequalities and Amenability. Morse Theory and Minimal Models. Pinching and Collapse. Appendix A: 'Quasiconvex' Domains in Rn. Appendix B: Metric Spaces and Mappings Seen at Many Scales. Appendix C: Paul Levy's Isoperimetric Inequality. Appendix D: Systolically Free Manifolds. Bibliography. Glossary of Notation. Index.
Sujets :
Documents associés : Autre format: Metric structures for Riemannian and non-Riemannian spaces
LEADER 06458clm a2200829 4500
001 PPN12314728X
003 http://www.sudoc.fr/12314728X
005 20241001154500.0
010 |a 978-0-8176-4583-0 
017 7 0 |a 10.1007/978-0-8176-4583-0  |2 DOI 
035 |a (OCoLC)652713256 
035 |a Springer978-0-8176-4583-0 
035 |a Springer-11649-978-0-8176-4583-0 
035 |a SPRINGER_EBOOKS_LN_PLURI_10.1007/978-0-8176-4583-0 
100 |a 20080410f20 k y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a US 
105 |a a a 001yy 
135 |a dr||||||||||| 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c c  |2 rdamedia 
182 1 |6 z01  |a b 
183 |6 z01  |a ceb  |2 RDAfrCarrier 
200 1 |a Metric Structures for Riemannian and Non-Riemannian Spaces  |f Misha Gromov, Pierre Pansu  |g with appendices by M. Katz, P. Pansu, and S. Semmes  |g english translation by Sean Michael Bates 
214 0 |a Boston, MA  |c Birkhäuser Boston 
214 2 |a Cham  |c Springer Nature  |d [20..] 
225 2 |a Modern Birkhäuser Classics 
303 |a L'impression du document génère 593 p. 
304 |a Trad. de : "Structures métriques des variétés riemanniennes" 
320 |a Bibliogr. Index 
324 |a Numérisation de la réimpression de l'édition corrigée datant de 2001 
327 1 |a Preface to the French Edition  |a Preface to the English Edition  |a Introduction: Metrics Everywhere  |a Length Structures: Path Metric Spaces  |a Degree and Dilatation  |a Metric Structures on Families of Metric Spaces  |a Convergence and Concentration of Metrics and Measures  |a Loewner Rediscovered  |a Manifolds with Bounded Ricci Curvature  |a Isoperimetric Inequalities and Amenability  |a Morse Theory and Minimal Models  |a Pinching and Collapse  |a Appendix A: 'Quasiconvex' Domains in Rn  |a Appendix B: Metric Spaces and Mappings Seen at Many Scales  |a Appendix C: Paul Levy's Isoperimetric Inequality  |a Appendix D: Systolically Free Manifolds  |a Bibliography  |a Glossary of Notation  |a Index. 
330 |a Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory. The new wave began with seminal papers by Svarc and Milnor on the growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This progress was followed by the creation of the asymptotic metric theory of infinite groups by Gromov. The structural metric approach to the Riemannian category, tracing back to Cheeger's thesis, pivots around the notion of the Gromov Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity. The first stages of the new developments were presented in Gromov's course in Paris, which turned into the famous "Green Book" by Lafontaine and Pansu (1979). The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures as well as an extensive bibliography and index round out this unique and beautiful book. 
371 0 |a Accès en ligne pour les établissements français bénéficiaires des licences nationales 
371 0 |a Accès soumis à abonnement pour tout autre établissement 
371 1 |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales  |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 
410 | |0 162157924  |t Modern Birkhäuser Classics  |b Ressource électronique  |c Boston  |n Birkhäuser  |d 199X 
452 | |0 125090560  |t Metric structures for Riemannian and non-Riemannian spaces  |f Misha Gromov  |c Boston  |n Birkhäuser  |d 2007  |p 1 vol. (XIX-585 p.)  |s Modern Birkhäuser classics  |y 978-0-8176-4582-3 
606 |3 PPN031461972  |a Géométrie de Riemann  |2 rameau 
606 |3 PPN029649609  |a Riemann, Surfaces de  |2 rameau 
606 |3 PPN027585662  |a Riemann, Variétés de  |2 rameau 
606 |3 PPN027391965  |a Espaces métriques  |2 rameau 
610 1 |a Differential Geometry. 
610 2 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
610 2 |a Algebraic Topology. 
610 2 |a Measure and Integration. 
610 2 |a Analysis. 
615 |a Mathematics and Statistics  |n 11649  |2 Springer 
676 |a 516.36  |v 23 
680 |a QA641-670 
686 |a 53-02  |c 2010  |2 msc 
686 |a 53C20  |c 2010  |2 msc 
686 |a 53C23  |c 2010  |2 msc 
686 |a 53C70  |c 2010  |2 msc 
686 |a 57N65  |c 2010  |2 msc 
686 |a 51K99  |c 2010  |2 msc 
700 1 |3 PPN02690411X  |a Gromov  |b Mikhail  |f 1943-...  |4 070 
702 1 |3 PPN115618414  |a Katz  |b Mikhail Gersh  |f 1958-....  |4 205 
702 1 |3 PPN028793072  |a Pansu  |b Pierre  |f 1959-....  |4 205 
702 1 |3 PPN033325995  |a Semmes  |b Stephen  |f 1962-....  |4 205 
702 1 |3 PPN127860819  |a Bates  |b Sean Michael  |f 19..-....  |4 730 
801 3 |a FR  |b Abes  |c 20240911  |g AFNOR 
801 1 |a DE  |b Springer  |c 20190618  |g AACR2 
856 4 |q PDF  |u https://doi.org/10.1007/978-0-8176-4583-0  |z Accès sur la plateforme de l'éditeur 
856 4 |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-JN8BL6D6-X  |z Accès sur la plateforme Istex 
856 4 |5 441099901:830844996  |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/978-0-8176-4583-0 
915 |5 441099901:830844996  |b SPRING18-00118 
930 |5 441099901:830844996  |b 441099901  |j g 
991 |5 441099901:830844996  |a Exemplaire créé en masse par ITEM le 30-09-2024 15:59 
997 |a NUM  |b SPRING18-00118  |d NUMpivo  |e EM  |s d 
998 |a 977644