Metric Structures for Riemannian and Non-Riemannian Spaces
Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory. The new wave began with seminal papers by Svarc and Milnor on...
Auteur principal : | |
---|---|
Autres auteurs : | , , , |
Format : | Livre |
Langue : | anglais |
Titre complet : | Metric Structures for Riemannian and Non-Riemannian Spaces / Misha Gromov, Pierre Pansu; with appendices by M. Katz, P. Pansu, and S. Semmes; english translation by Sean Michael Bates |
Publié : |
Boston, MA :
Birkhäuser Boston
, [20..] Cham : Springer Nature |
Collection : | Modern Birkhäuser Classics |
Accès en ligne : |
Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr |
Note sur l'URL : | Accès sur la plateforme de l'éditeur Accès sur la plateforme Istex |
Condition d'utilisation et de reproduction : | Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 |
Reproduction de : | Numérisation de la réimpression de l'édition corrigée datant de 2001 |
Contenu : | Preface to the French Edition. Preface to the English Edition. Introduction: Metrics Everywhere. Length Structures: Path Metric Spaces. Degree and Dilatation. Metric Structures on Families of Metric Spaces. Convergence and Concentration of Metrics and Measures. Loewner Rediscovered. Manifolds with Bounded Ricci Curvature. Isoperimetric Inequalities and Amenability. Morse Theory and Minimal Models. Pinching and Collapse. Appendix A: 'Quasiconvex' Domains in Rn. Appendix B: Metric Spaces and Mappings Seen at Many Scales. Appendix C: Paul Levy's Isoperimetric Inequality. Appendix D: Systolically Free Manifolds. Bibliography. Glossary of Notation. Index. |
Sujets : | |
Documents associés : | Autre format:
Metric structures for Riemannian and non-Riemannian spaces |
LEADER | 06458clm a2200829 4500 | ||
---|---|---|---|
001 | PPN12314728X | ||
003 | http://www.sudoc.fr/12314728X | ||
005 | 20241001154500.0 | ||
010 | |a 978-0-8176-4583-0 | ||
017 | 7 | 0 | |a 10.1007/978-0-8176-4583-0 |2 DOI |
035 | |a (OCoLC)652713256 | ||
035 | |a Springer978-0-8176-4583-0 | ||
035 | |a Springer-11649-978-0-8176-4583-0 | ||
035 | |a SPRINGER_EBOOKS_LN_PLURI_10.1007/978-0-8176-4583-0 | ||
100 | |a 20080410f20 k y0frey0103 ba | ||
101 | 0 | |a eng |2 639-2 | |
102 | |a US | ||
105 | |a a a 001yy | ||
135 | |a dr||||||||||| | ||
181 | |6 z01 |c txt |2 rdacontent | ||
181 | 1 | |6 z01 |a i# |b xxxe## | |
182 | |6 z01 |c c |2 rdamedia | ||
182 | 1 | |6 z01 |a b | |
183 | |6 z01 |a ceb |2 RDAfrCarrier | ||
200 | 1 | |a Metric Structures for Riemannian and Non-Riemannian Spaces |f Misha Gromov, Pierre Pansu |g with appendices by M. Katz, P. Pansu, and S. Semmes |g english translation by Sean Michael Bates | |
214 | 0 | |a Boston, MA |c Birkhäuser Boston | |
214 | 2 | |a Cham |c Springer Nature |d [20..] | |
225 | 2 | |a Modern Birkhäuser Classics | |
303 | |a L'impression du document génère 593 p. | ||
304 | |a Trad. de : "Structures métriques des variétés riemanniennes" | ||
320 | |a Bibliogr. Index | ||
324 | |a Numérisation de la réimpression de l'édition corrigée datant de 2001 | ||
327 | 1 | |a Preface to the French Edition |a Preface to the English Edition |a Introduction: Metrics Everywhere |a Length Structures: Path Metric Spaces |a Degree and Dilatation |a Metric Structures on Families of Metric Spaces |a Convergence and Concentration of Metrics and Measures |a Loewner Rediscovered |a Manifolds with Bounded Ricci Curvature |a Isoperimetric Inequalities and Amenability |a Morse Theory and Minimal Models |a Pinching and Collapse |a Appendix A: 'Quasiconvex' Domains in Rn |a Appendix B: Metric Spaces and Mappings Seen at Many Scales |a Appendix C: Paul Levy's Isoperimetric Inequality |a Appendix D: Systolically Free Manifolds |a Bibliography |a Glossary of Notation |a Index. | |
330 | |a Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory. The new wave began with seminal papers by Svarc and Milnor on the growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This progress was followed by the creation of the asymptotic metric theory of infinite groups by Gromov. The structural metric approach to the Riemannian category, tracing back to Cheeger's thesis, pivots around the notion of the Gromov Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity. The first stages of the new developments were presented in Gromov's course in Paris, which turned into the famous "Green Book" by Lafontaine and Pansu (1979). The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures as well as an extensive bibliography and index round out this unique and beautiful book. | ||
371 | 0 | |a Accès en ligne pour les établissements français bénéficiaires des licences nationales | |
371 | 0 | |a Accès soumis à abonnement pour tout autre établissement | |
371 | 1 | |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 | |
410 | | | |0 162157924 |t Modern Birkhäuser Classics |b Ressource électronique |c Boston |n Birkhäuser |d 199X | |
452 | | | |0 125090560 |t Metric structures for Riemannian and non-Riemannian spaces |f Misha Gromov |c Boston |n Birkhäuser |d 2007 |p 1 vol. (XIX-585 p.) |s Modern Birkhäuser classics |y 978-0-8176-4582-3 | |
606 | |3 PPN031461972 |a Géométrie de Riemann |2 rameau | ||
606 | |3 PPN029649609 |a Riemann, Surfaces de |2 rameau | ||
606 | |3 PPN027585662 |a Riemann, Variétés de |2 rameau | ||
606 | |3 PPN027391965 |a Espaces métriques |2 rameau | ||
610 | 1 | |a Differential Geometry. | |
610 | 2 | |a Manifolds and Cell Complexes (incl. Diff.Topology). | |
610 | 2 | |a Algebraic Topology. | |
610 | 2 | |a Measure and Integration. | |
610 | 2 | |a Analysis. | |
615 | |a Mathematics and Statistics |n 11649 |2 Springer | ||
676 | |a 516.36 |v 23 | ||
680 | |a QA641-670 | ||
686 | |a 53-02 |c 2010 |2 msc | ||
686 | |a 53C20 |c 2010 |2 msc | ||
686 | |a 53C23 |c 2010 |2 msc | ||
686 | |a 53C70 |c 2010 |2 msc | ||
686 | |a 57N65 |c 2010 |2 msc | ||
686 | |a 51K99 |c 2010 |2 msc | ||
700 | 1 | |3 PPN02690411X |a Gromov |b Mikhail |f 1943-... |4 070 | |
702 | 1 | |3 PPN115618414 |a Katz |b Mikhail Gersh |f 1958-.... |4 205 | |
702 | 1 | |3 PPN028793072 |a Pansu |b Pierre |f 1959-.... |4 205 | |
702 | 1 | |3 PPN033325995 |a Semmes |b Stephen |f 1962-.... |4 205 | |
702 | 1 | |3 PPN127860819 |a Bates |b Sean Michael |f 19..-.... |4 730 | |
801 | 3 | |a FR |b Abes |c 20240911 |g AFNOR | |
801 | 1 | |a DE |b Springer |c 20190618 |g AACR2 | |
856 | 4 | |q PDF |u https://doi.org/10.1007/978-0-8176-4583-0 |z Accès sur la plateforme de l'éditeur | |
856 | 4 | |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-JN8BL6D6-X |z Accès sur la plateforme Istex | |
856 | 4 | |5 441099901:830844996 |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/978-0-8176-4583-0 | |
915 | |5 441099901:830844996 |b SPRING18-00118 | ||
930 | |5 441099901:830844996 |b 441099901 |j g | ||
991 | |5 441099901:830844996 |a Exemplaire créé en masse par ITEM le 30-09-2024 15:59 | ||
997 | |a NUM |b SPRING18-00118 |d NUMpivo |e EM |s d | ||
998 | |a 977644 |