Numerical Methods for Laplace Transform Inversion

Operational methods have been used for over a century to solve many problems-for example, ordinary and partial differential equations. In many problems it is fairly easy to obtain the Laplace transform, but it can be very demanding to determine the inverse Laplace transform that is the solution of t...

Description complète

Détails bibliographiques
Auteur principal : Cohen Alan M. (Auteur)
Format : Livre
Langue : anglais
Titre complet : Numerical Methods for Laplace Transform Inversion / by Alan M. Cohen,...
Édition : 1st ed. 2007.
Publié : New York, NY : Springer US , [20..]
Cham : Springer Nature
Collection : Numerical methods and algorithms Series Editor: Claude Brezinski ; 5
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Basic Results. Inversion Formulae and Practical Results. The Method of Series Expansion. Quadrature Methods. Rational Approximation Methods. The Method of Talbot. Methods based on the Post-Widder Inversion Formula. The Method of Regularization. Survey Results. Applications.
Sujets :
Documents associés : Autre format: Numerical methods for Laplace transform inversion
Autre format: Numerical Methods for Laplace Transform Inversion
Autre format: Numerical Methods for Laplace Transform Inversion
Autre format: Numerical methods for Laplace transform inversion
Autre format: Numerical Methods for Laplace Transform Inversion
Autre format: Numerical Methods for Laplace Transform Inversion
Autre format: Numerical methods for Laplace transform inversion
Description
Résumé : Operational methods have been used for over a century to solve many problems-for example, ordinary and partial differential equations. In many problems it is fairly easy to obtain the Laplace transform, but it can be very demanding to determine the inverse Laplace transform that is the solution of the given problem. Sometimes, after some difficult contour integration, we find that a series solution results, but even this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms together with a comprehensive list of methods that are available at the current time. Computer programs are included for those methods that perform consistently well on a wide range of Laplace transforms. Audience This book is intended for engineers, scientists, mathematicians, statisticians and financial planners.
Notes : L'impression du document génère 261 p.
Bibliographie : Bibliogr. index
ISBN : 978-0-387-68855-8
DOI : 10.1007/978-0-387-68855-8