Applied scanning probe methods : II Scanning probe microscopy techniques

The Nobel Prize of 1986 on Sc- ningTunnelingMicroscopysignaled a new era in imaging. The sc- ning probes emerged as a new - strument for imaging with a p- cision suf?cient to delineate single atoms. At ?rst there were two the Scanning Tunneling Microscope, or STM, and the Atomic Force Mic- scope, or...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux : Bhushan Bharat (Directeur de publication), Fuchs Harald (Directeur de publication)
Format : Livre
Langue : anglais
Titre complet : Applied scanning probe methods. II, Scanning probe microscopy techniques / edited by Bharat Bhushan, Harald Fuchs.
Édition : 1st ed. 2006.
Publié : Berlin, Heidelberg : Springer Berlin Heidelberg , [20..]
Cham : Springer Nature
Collection : Nanoscience and technology (Internet)
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Higher Harmonics in Dynamic Atomic Force Microscopy. Atomic Force Acoustic Microscopy. Scanning Ion Conductance Microscopy. Spin-Polarized Scanning Tunneling Microscopy. Dynamic Force Microscopy and Spectroscopy. Sensor Technology for Scanning Probe Microscopy and New Applications. Quantitative Nanomechanical Measurements in Biology. Scanning Microdeformation Microscopy: Subsurface Imaging and Measurement of Elastic Constants at Mesoscopic Scale. Electrostatic Force and Force Gradient Microscopy: Principles, Points of Interest and Application to Characterisation of Semiconductor Materials and Devices. Polarization-Modulation Techniques in Near-Field Optical Microscopy for Imaging of Polarization Anisotropy in Photonic Nanostructures. Focused Ion Beam as a Scanning Probe: Methods and Applications
Sujets :
Documents associés : Autre format: Applied scanning probe methods II
Autre format: Applied Scanning Probe Methods II
Autre format: Applied Scanning Probe Methods II
LEADER 05444clm a2200733 4500
001 PPN123125286
003 http://www.sudoc.fr/123125286
005 20241002160100.0
010 |a 978-3-540-27453-7 
017 7 0 |a 10.1007/b139097  |2 DOI 
035 |a (OCoLC)690281758 
035 |a Springer978-3-540-27453-7 
035 |a SPRINGER_EBOOKS_LN_PLURI_10.1007/b139097 
035 |a Springer-11644-978-3-540-27453-7 
100 |a 20080410f20 u y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a DE 
135 |a dr||||||||||| 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c c  |2 rdamedia 
182 1 |6 z01  |a b 
183 |6 z01  |a ceb  |2 RDAfrCarrier 
200 1 |a Applied scanning probe methods  |h II  |i Scanning probe microscopy techniques  |f edited by Bharat Bhushan, Harald Fuchs. 
205 |a 1st ed. 2006. 
214 0 |a Berlin, Heidelberg  |c Springer Berlin Heidelberg 
214 2 |a Cham  |c Springer Nature  |d [20..] 
225 0 |a NanoScience and Technology  |x 2197-7127 
327 1 |a Higher Harmonics in Dynamic Atomic Force Microscopy  |a Atomic Force Acoustic Microscopy  |a Scanning Ion Conductance Microscopy  |a Spin-Polarized Scanning Tunneling Microscopy  |a Dynamic Force Microscopy and Spectroscopy  |a Sensor Technology for Scanning Probe Microscopy and New Applications  |a Quantitative Nanomechanical Measurements in Biology  |a Scanning Microdeformation Microscopy: Subsurface Imaging and Measurement of Elastic Constants at Mesoscopic Scale  |a Electrostatic Force and Force Gradient Microscopy: Principles, Points of Interest and Application to Characterisation of Semiconductor Materials and Devices  |a Polarization-Modulation Techniques in Near-Field Optical Microscopy for Imaging of Polarization Anisotropy in Photonic Nanostructures  |a Focused Ion Beam as a Scanning Probe: Methods and Applications 
330 |a The Nobel Prize of 1986 on Sc- ningTunnelingMicroscopysignaled a new era in imaging. The sc- ning probes emerged as a new - strument for imaging with a p- cision suf?cient to delineate single atoms. At ?rst there were two the Scanning Tunneling Microscope, or STM, and the Atomic Force Mic- scope, or AFM. The STM relies on electrons tunneling between tip and sample whereas the AFM depends on the force acting on the tip when it was placed near the sample. These were quickly followed by the M- netic Force Microscope, MFM, and the Electrostatic Force Microscope, EFM. The MFM will image a single magnetic bit with features as small as 10nm. With the EFM one can monitor the charge of a single electron. Prof. Paul Hansma at Santa Barbara opened the door even wider when he was able to image biological objects in aqueous environments. At this point the sluice gates were opened and a multitude of different instruments appeared. There are signi?cant differences between the Scanning Probe Microscopes or SPM, and others such as the Scanning Electron Microscope or SEM. The probe microscopes do not require preparation of the sample and they operate in ambient atmosphere, whereas, the SEM must operate in a vacuum environment and the sample must be cross-sectioned to expose the proper surface. However, the SEM can record 3D image and movies, features that are not available with the scanning probes 
371 0 |a Accès en ligne pour les établissements français bénéficiaires des licences nationales 
371 0 |a Accès soumis à abonnement pour tout autre établissement 
371 1 |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales  |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 
410 | |0 17428859X  |t Nanoscience and technology (Internet)  |x 2197-7127 
452 | |0 10798265X  |t Applied scanning probe methods II  |o scanning probe microscopy techniques  |f edited by Bharat Bhushan, Harald Fuchs  |c Berlin  |n Springer  |d 2006  |p 1 vol. (XLIII-420 p.)  |s Nanoscience and technology  |y 3-540-26242-3 
452 | |t Applied Scanning Probe Methods II  |b Texte imprimé  |y 9783642065699 
452 | |t Applied Scanning Probe Methods II  |b Texte imprimé  |y 9783540811947 
610 1 |a Chemistry 
610 2 |a Physical Chemistry 
610 2 |a Solid State Physics and Spectroscopy 
610 2 |a Analytical Chemistry 
610 2 |a Nanotechnology 
610 2 |a Surfaces and Interfaces, Thin Films 
610 2 |a Polymer Sciences 
610 1 |a Nanotechnology and Microengineering 
610 2 |a Spectroscopy and Microscopy 
610 2 |a Surface and Interface Science, Thin Films 
615 |a @Chemistry and Materials Science  |n 11644; ZDB-2-CMS  |2 Springer 
615 |a @Chemistry and Materials Science  |n 11644  |2 Springer 
676 |a 620.5  |v 23 
680 |a T174.7 
700 1 |a Bhushan  |b Bharat  |4 651 
701 1 |a Fuchs  |b Harald  |4 651 
801 3 |a FR  |b Abes  |c 20240911  |g AFNOR 
801 1 |a DE  |b Springer  |c 20220104  |g AACR2 
856 4 |q PDF  |u https://doi.org/10.1007/b139097  |z Accès sur la plateforme de l'éditeur 
856 4 |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-2XTFGF58-X  |z Accès sur la plateforme Istex 
856 4 |5 441099901:830928952  |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/b139097 
915 |5 441099901:830928952  |b SPRING4-00249 
930 |5 441099901:830928952  |b 441099901  |j g 
979 |a NUM 
991 |5 441099901:830928952  |a Exemplaire créé en masse par ITEM le 01-10-2024 15:46 
997 |a NUM  |b SPRING4-00249  |d NUMpivo  |e EM  |s d 
998 |a 980225