New carbon based materials for electrochemical energy storage systems : batteries, supercapacitors and fuel cells

Carbonaceous materials play a fundamental role in electrochemical energy storage systems. Carbon in the structural form of graphite is widely used as the active material in lithium-ion batteries; it is abundant, and environmentally friendly. Carbon is also used to conduct and distribute charge effec...

Description complète

Enregistré dans:
Détails bibliographiques
Autres auteurs : Barsukov Igor V. (Directeur de publication), Johnson Christopher S. (Directeur de publication), Barsukov Vyacheslav Z. (Directeur de publication), Doninger Joseph Eugene (Directeur de publication)
Format : Livre
Langue : anglais
Titre complet : New carbon based materials for electrochemical energy storage systems : batteries, supercapacitors and fuel cells / edited by Igor V. Barsukov, Christopher S. Johnson, Joseph E. Doninger, Vyacheslav Z. Barsukov
Édition : 1st ed. 2006.
Publié : Dordrecht : Springer Netherlands , [20..]
Cham : Springer Nature
Collection : NATO science series Series II Mathematics, physics, and chemistry ; 229
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : NEW CARBON MATERIALS FOR SUPERCAPACITORS. NOVEL CARBONACEOUS MATERIALS FOR APPLICATION IN THE ELECTROCHEMICAL SUPERCAPACITORS. EFFECT OF CARBONACEOUS MATERIALS ON PERFORMANCE OF CARBON-CARBON AND CARBON-Ni OXIDE TYPES OF ELECTROCHEMICAL CAPACITORS WITH ALKALINE ELECTROLYTE. HYBRID SUPERCAPACITORS BASED ON ?-MnO2/CARBON NANOTUBES COMPOSITES. DEVELOPMENT OF SUPERCAPACITORS BASED ON CONDUCTING POLYMERS. SUPERCAPACITORS: OLD PROBLEMS AND NEW TRENDS. MODELING POROSITY DEVELOPMENT DURING KOH ACTIVATION OF COAL AND PITCH-DERIVED CARBONS FOR ELECTROCHEMICAL CAPACITORS. GENERAL PROPERTIES OF IONIC LIQUIDS AS ELECTROLYTES FOR CARBON-BASED DOUBLE LAYER CAPACITORS. CARBON MATERIALS FOR GAS DIFFUSION ELECTRODES, METAL AIR CELLS AND BATTERIES. NEW CONCEPT FOR THE METAL-AIR BATTERIES USING COMPOSITES: CONDUCTING POLYMERS / EXPANDED GRAPHITE AS CATALYSTS. MECHANICALLY RECHARGEABLE MAGNESIUM-AIR CELLS WITH NaCl-ELECTROLYTE. APPLICATION OF CARBON-BASED MATERIALS IN METAL-AIR BATTERIES: RESEARCH, DEVELOPMENT, COMMERSIALIZATION. METAL AIR BATTERIES WITH CARBONACEOUS AIR ELECTRODES AND NONMETALLIC CATALYSTS. CARBON ANODES FOR LITHIUM-ION BATTERIES. CARBONACEOUS MATERIALS FOR BATTERIES. ANODE-ELECTROLYTE REACTIONS IN Li BATTERIES: THE DIFFERENCES BETWEEN GRAPHITIC AND METALLIC ANODES. PERFORMANCE OF NOVEL TYPES OF CARBONACEOUS MATERIALS IN THE ANODES OF CLAiO S LITHIUM-ION BATTERY SYSTEMS. WHY GRAPHITE ELECTRODES FAIL IN PC SOLUTIONS: AN INSIGHT FROM MORPHOLOGICAL STUDIES. NEW DEVELOPMENTS IN THE ADVANCED GRAPHITE FOR LITHIUM-ION BATTERIES. MECHANISMS OF REVERSIBLE AND IRREVERSIBLE INSERTION IN NANOSTRUCTURED CARBONS USED FOR Li-ION BATTERIES. SOME THERMODYNAMICS AND KINETICS ASPECTS OF THE GRAPHITE-LITHIUM NEGATIVE ELECTRODE FOR LITHIUM-ION BATTERIES. CHARACTERIZATION OF ANODES BASED ON VARIOUS CARBONACEOUS MATERIALS FOR APPLICATION IN LITHIUM-ION CELLS. A CARBON COMPOSITE FOR THE NEGATIVE ELECTRODE OF LI-ION BATTERIES. ELECTROCHEMICAL INTERCALATION OF PF 6 AND BF 4 INTO SINGLE-WALLED CARBON NANOTUBES. SURFACE TREATED NATURAL GRAPHITE AS ANODE MATERIAL FOR HIGH-POWER LI-ION BATTERY APPLICATIONS. EMERGING METAL/CARBON COMPOSITE ANODES FOR NEXT GENERATION LITHIUM-ION BATTERIES. ON THE THEORETICAL PREREQUISITES FOR APPLICATION OF NOVEL MATERIALS IN PROMISING ENERGY SYSTEMS. CAPABILITIES OF THIN TIN FILMS AS NEGATIVE ELECTRODE ACTIVE MATERIALS FOR LITHIUM-ION BATTERIES. COMPOSITE ANODE MATERIALS FOR HIGH ENERGY DENSITY LITHIUM-ION BATTERIES. ELECTROCHEMICAL ACTIVITY OF CARBONS MODIFIED BY d-METAL COMPLEXES WITH ETHANOLAMINES. METAL-GRAPHITE COMPOSITS AS MATERIALS FOR ELECTRODES OF LITHIUM-ION BATTERIES. ELECTROCHEMICAL PERFORMANCE OF Ni/Cu-METALLIZED & CARBON-COATED GRAPHITES FOR LITHIUM BATTERIES. NEW NANO- THROUGH MACRO-CARBONS FOR ENERGY SYSTEMS: SYNTHESIS, MODELING, CHARACTERIZATION. STABILIZATION OF GRAPHITE NITRATE VIA CO-INTERCALATION OF ORGANIC COMPOUNDS. ELECTROCHEMICAL STABILITY OF NATURAL, THERMALLY EXFOLEATED AND MODIFIED FORMS OF GRAPHITE TOWARDS ELECTROCHEMICAL OXIDATION. LOW TEMPERATURE SYNTHESIS OF GRAPHITE FROM IRON CARBIDE. HIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPY IMAGE ANALYSIS OF DISORDERED CARBONS USED FOR ELECTROCHEMICAL STORAGE OF ENERGY. ELECTROLYSIS OF CARBAMIDE-CHLORIDE MELTS AT INERT ELECTRODES. GRAPHITE INTERCALATION AS A WAY TO CARBON-CARBON COMPOSITES AND CARBON NANOSCROLLS. CARBONS IN THE CATHODES OF LITHIUM-ION BATTERIES; ALTERNATIVE FORMS OF MnO2, CATHODE / CARBON MODELING. DIAGNOSTIC EVALUATION OF POWER FADE PHENOMENA AND CALENDAR LIFE REDUCTION IN HIGH-POWER LITHIUM-ION BATTERIES. MODELING OF ELECTROCHEMICAL PROCESSES IN THE ELECTRODES BASED ON SOLID ACTIVE REAGENTS AND CONDUCTIVE CARBON ADDITIVES. ON THE OPTIMAL DESIGN OF AMORPHOUS MANGANESE OXIDE FOR APPLICATIONS IN POWER SOURCES. INVESTIGATION OF CATHODIC MATERIALS BASED ON DIFFERENT TYPES OF MnO2/CARBON. INVESTIGATION OF THIN-FILM ELECTRODE MATERIALS AS CATHODIC ACTIVES FOR POWER SOURCES. SYNTHESIS OF MIXED OXIDES USING POLYBASIC CARBOXYLIC HYDROXY-AND AMINO-ACID ROUTES: PROBLEMS AND PROSPECTS. IMPROVED ELETROCHEMICAL PROPERTIES OF SURFACE-COATED Li(Ni,Co,Mn)O2 CATHODE MATERIAL FOR Li SECONDARY BATTERIES
Sujets :
Documents associés : Autre format: New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells