Carbon nanotubes

It is about 15 years that the carbon nanotubes have been discovered by Sumio Iijima in a transmission electron microscope. Since that time, these long hollow cylindrical carbon molecules have revealed being remarkable nanostructures for several aspects. They are composed of just one element, Carbon,...

Description complète

Enregistré dans:
Détails bibliographiques
Autres auteurs : Popov Valentin N. (Directeur de publication), Lambin Philippe (Directeur de publication)
Format : Livre
Langue : anglais
Titre complet : Carbon nanotubes / edited by Valentin N. Popov, Philippe Lambin
Édition : 1st ed. 2006.
Publié : Dordrecht : Springer Netherlands , [20..]
Cham : Springer Nature
Collection : NATO science series Series II Mathematics, physics, and chemistry ; 222
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Synthesis and structural characterization. ARC DISCHARGE AND LASER ABLATION SYNTHESIS OF SINGLEWALLED CARBON NANOTUBES. SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY OF CARBON NANOTUBES. STRUCTURAL DETERMINATION OF INDIVIDUAL SINGLEWALL CARBON NANOTUBE BY NANOAREA ELECTRON DIFFRACTION. THE STRUCTURAL EFFECTS ON MULTI-WALLED CARBON NANOTUBES BY THERMAL ANNEALING UNDER VACUUM. TEM SAMPLE PREPARATION FOR STUDYING THE INTERFACE CNTS-CATALYST-SUBSTRATE. A METHOD TO SYNTHESIZE AND TAILOR CARBON NANOTUBES BY ELECTRON IRRADIATION IN THE TEM. SCANNING TUNNELING MICROSCOPY STUDIES OF NANOTUBELIKE STRUCTURES ON THE HOPG SURFACE. INFLUENCE OF CATALYST AND CARBON SOURCE ON THE SYNTHESIS OF CARBON NANOTUBES IN A SEMI-CONTINUOUS INJECTION CHEMICAL VAPOR DEPOSITION METHOD. PECVD GROWTH OF CARBON NANOTUBES. CARBON NANOTUBES GROWTH AND ANCHORAGE TO CARBON FIBRES. CVD SYNTHESIS OF CARBON NANOTUBES ON DIFFERENT SUBSTRATES. INFLUENCE OF THE SUBSTRATE TYPES AND TREATMENTS ON CARBON NANOTUBE GROWTH BY CHEMICAL VAPOR DEPOSITION WITH NICKEL CATALYST. NON CATALYTIC CVD GROWTH OF 2D-ALIGNED CARBON NANOTUBES. PYROLYTIC SYNTHESIS OF CARBON NANOTUBES ON Ni, Co, Fe/MCM-41 CATALYSTS. A GRAND CANONICAL MONTE CARLO SIMULATION STUDY OF CARBON STRUCTURAL AND ADSORPTION PROPERTIES OF INZEOLITE TEMPLATED CARBON NANOSTRUCTURES. Vibrational properties and optical spectroscopies. VIBRATIONAL AND RELATED PROPERTIES OF CARBON NANOTUBES. RAMAN SCATTERING OF CARBON NANOTUBES. RAMAN SPECTROSCOPY OF ISOLATED SINGLE-WALLED CARBON NANOTUBES. Electronic and optical properties and electrical transport. ELECTRONIC TRANSPORT IN NANOTUBES AND THROUGH JUNCTIONS OF NANOTUBES. ELECTRONIC TRANSPORT IN CARBON NANOTUBES AT THE MESOSCOPIC SCALE. WAVE PACKET DYNAMICAL INVESTIGATION OF STM IMAGING MECHANISM USING AN ATOMIC PSEUDOPOTENTIAL MODEL OF A CARBON NANOTUBE. CARBON NANOTUBE FILMS FOR OPTICAL ABSORPTION. INTERSUBBAND EXCITON RELAXATION DYNAMICS IN SINGLEWALLED CARBON NANOTUBES. PECULIARITIES OF THE OPTICAL POLARIZABILITY OF SINGLEWALLED ZIGZAG CARBON NANOTUBE WITH CAPPED AND TAPERED ENDS. THIRD-ORDER NONLINEARITY AND PLASMON PROPERTIES IN CARBON NANOTUBES. HYDRODYNAMIC MODELING OF FAST ION INTERACTIONS WITH CARBON NANOTUBES. LOCAL RESISTANCE OF SINGLE-WALLED CARBON NANOTUBES AS MEASURED BY SCANNING PROBE TECHNIQUES. BAND STRUCTURE OF CARBON NANOTUBES EMBEDDED IN A CRYSTAL MATRIX. MAGNETOTRANSPORT IN 2-D ARRAYS OF SINGLE-WALL CARBON NANOTUBES. COMPUTER MODELING OF THE DIFFERENTIAL CONDUCTANCE OF SYMMETRY CONNECTED ARMCHAIR-ZIGZAG HETEROJUNCTIONS. Molecule adsorption, functionalization and chemical properties. MOLECULAR DYNAMICS SIMULATION OF GAS ADSORPTION AND ABSORPTION IN NANOTUBES. FIRST-PRINCIPLES AND MOLECULAR DYNAMICS SIMULATIONS OF METHANE ADSORPTION ON GRAPHENE. EFFECT OF SOLVENT AND DISPERSANT ON THE BUNDLE DISSOCIATION OF SINGLE-WALLED CARBON NANOTUBES. CARBON NANOTUBES WITH VACANCIES UNDER EXTERNAL MECHANICAL STRESS AND ELECTRIC FIELD. Mechanical properties of nanotubes and composite materials. MECHANICAL PROPERTIES OF THREE-TERMINAL NANOTUBE JUNCTION DETERMINED FROM COMPUTER SIMULATIONS. OSCILLATION OF THE CHARGED DOUBLEWALL CARBON NANOTUBE. POLYMER CHAINS BEHAVIOR IN NANOTUBES: A MONTE CARLO STUDY. CARBON NANOTUBES AS CERAMIC MATRIX REINFORCEMENTS. CARBON NANOTUBES AS POLYMER BUILDING BLOCKS. SYNTHESIS AND CHARACTERIZATION OF EPOXY-SINGLE-WALL CARBON NANOTUBE COMPOSITES. VAPOUR GROWN CARBON NANO-FIBERS POLYPROPYLENE COMPOSITES AND THEIR PROPERTIES. Applications. NANOTECHNOLOGY: CHALLENGES OF CONVERGENCE, HETEROGENEITY AND HIERARCHICAL INTEGRATION. BEHAVIOR OF CARBON NANOTUBES IN BIOLOGICAL SYSTEMS. MOLECULAR DYNAMICS OF CARBON NANOTUBE-POLYPEPTIDE COMPLEXES AT THE BIOMEMBRANE-WATER INTERFACE. THERMAL CONDUCTIVITY ENHANCEMENT OF NANOFLUIDS. CARBON NANOTUBES AS ADVANCED LUBRICANT ADDITIVES. SYNTHESIS AND CHARACTERIZATION OF IRON NANOSTRUCTURES INSIDE POROUS ZEOLITES AND THEIR APPLICATIONS IN WATER TREATMENT TECHNOLOGIES. NANOSTRUCTURED CARBON GROWTH BY AN EXPANDING RADIOFREQUENCY PLASMA JET. DESIGN AND RELATIVE STABILITY OF MULTICOMPONENT NANOWIRES. MODELING OF MOLECULAR ORBITAL AND SOLID STATE PACKING POLYMER CALCULATIONS ON THE BI-POLARON NATURE OF CONDUCTING SENSOR POLY(P-PHENYLENE). ND:LSB MICROCHIP LASER AS A PROMISING INSTRUMENT FOR RAMAN SPECTROSCOPY
Sujets :
Documents associés : Autre format: Carbon Nanotubes
LEADER 08849clm a2200709 4500
001 PPN123114993
003 http://www.sudoc.fr/123114993
005 20241002160100.0
010 |a 978-1-402-04574-5 
010 |a 978-1-4020-4574-5 
017 7 0 |a 10.1007/1-4020-4574-3  |2 DOI 
035 |a (OCoLC)690277935 
035 |a Springer978-1-402-04574-5 
035 |a Springer978-1-4020-4574-5 
035 |a SPRINGER_EBOOKS_LN_PLURI_10.1007/1-4020-4574-3 
035 |a Springer-11644-978-1-4020-4574-5 
100 |a 20080410f20 u y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a NL 
135 |a dr||||||||||| 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c c  |2 rdamedia 
182 1 |6 z01  |a b 
183 |6 z01  |a ceb  |2 RDAfrCarrier 
200 1 |a Carbon nanotubes  |f edited by Valentin N. Popov, Philippe Lambin 
205 |a 1st ed. 2006. 
214 0 |a Dordrecht  |c Springer Netherlands 
214 2 |a Cham  |c Springer Nature  |d [20..] 
225 0 |a NATO Science Series II: Mathematics, Physics and Chemistry, Mathematics, Physics and Chemistry  |v 222 
327 1 |a Synthesis and structural characterization  |a ARC DISCHARGE AND LASER ABLATION SYNTHESIS OF SINGLEWALLED CARBON NANOTUBES  |a SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY OF CARBON NANOTUBES  |a STRUCTURAL DETERMINATION OF INDIVIDUAL SINGLEWALL CARBON NANOTUBE BY NANOAREA ELECTRON DIFFRACTION  |a THE STRUCTURAL EFFECTS ON MULTI-WALLED CARBON NANOTUBES BY THERMAL ANNEALING UNDER VACUUM  |a TEM SAMPLE PREPARATION FOR STUDYING THE INTERFACE CNTS-CATALYST-SUBSTRATE  |a A METHOD TO SYNTHESIZE AND TAILOR CARBON NANOTUBES BY ELECTRON IRRADIATION IN THE TEM  |a SCANNING TUNNELING MICROSCOPY STUDIES OF NANOTUBELIKE STRUCTURES ON THE HOPG SURFACE  |a INFLUENCE OF CATALYST AND CARBON SOURCE ON THE SYNTHESIS OF CARBON NANOTUBES IN A SEMI-CONTINUOUS INJECTION CHEMICAL VAPOR DEPOSITION METHOD  |a PECVD GROWTH OF CARBON NANOTUBES  |a CARBON NANOTUBES GROWTH AND ANCHORAGE TO CARBON FIBRES  |a CVD SYNTHESIS OF CARBON NANOTUBES ON DIFFERENT SUBSTRATES  |a INFLUENCE OF THE SUBSTRATE TYPES AND TREATMENTS ON CARBON NANOTUBE GROWTH BY CHEMICAL VAPOR DEPOSITION WITH NICKEL CATALYST  |a NON CATALYTIC CVD GROWTH OF 2D-ALIGNED CARBON NANOTUBES  |a PYROLYTIC SYNTHESIS OF CARBON NANOTUBES ON Ni, Co, Fe/MCM-41 CATALYSTS  |a A GRAND CANONICAL MONTE CARLO SIMULATION STUDY OF CARBON STRUCTURAL AND ADSORPTION PROPERTIES OF INZEOLITE TEMPLATED CARBON NANOSTRUCTURES  |a Vibrational properties and optical spectroscopies  |a VIBRATIONAL AND RELATED PROPERTIES OF CARBON NANOTUBES  |a RAMAN SCATTERING OF CARBON NANOTUBES  |a RAMAN SPECTROSCOPY OF ISOLATED SINGLE-WALLED CARBON NANOTUBES  |a Electronic and optical properties and electrical transport  |a ELECTRONIC TRANSPORT IN NANOTUBES AND THROUGH JUNCTIONS OF NANOTUBES  |a ELECTRONIC TRANSPORT IN CARBON NANOTUBES AT THE MESOSCOPIC SCALE  |a WAVE PACKET DYNAMICAL INVESTIGATION OF STM IMAGING MECHANISM USING AN ATOMIC PSEUDOPOTENTIAL MODEL OF A CARBON NANOTUBE  |a CARBON NANOTUBE FILMS FOR OPTICAL ABSORPTION  |a INTERSUBBAND EXCITON RELAXATION DYNAMICS IN SINGLEWALLED CARBON NANOTUBES  |a PECULIARITIES OF THE OPTICAL POLARIZABILITY OF SINGLEWALLED ZIGZAG CARBON NANOTUBE WITH CAPPED AND TAPERED ENDS  |a THIRD-ORDER NONLINEARITY AND PLASMON PROPERTIES IN CARBON NANOTUBES  |a HYDRODYNAMIC MODELING OF FAST ION INTERACTIONS WITH CARBON NANOTUBES  |a LOCAL RESISTANCE OF SINGLE-WALLED CARBON NANOTUBES AS MEASURED BY SCANNING PROBE TECHNIQUES  |a BAND STRUCTURE OF CARBON NANOTUBES EMBEDDED IN A CRYSTAL MATRIX  |a MAGNETOTRANSPORT IN 2-D ARRAYS OF SINGLE-WALL CARBON NANOTUBES  |a COMPUTER MODELING OF THE DIFFERENTIAL CONDUCTANCE OF SYMMETRY CONNECTED ARMCHAIR-ZIGZAG HETEROJUNCTIONS  |a Molecule adsorption, functionalization and chemical properties  |a MOLECULAR DYNAMICS SIMULATION OF GAS ADSORPTION AND ABSORPTION IN NANOTUBES  |a FIRST-PRINCIPLES AND MOLECULAR DYNAMICS SIMULATIONS OF METHANE ADSORPTION ON GRAPHENE  |a EFFECT OF SOLVENT AND DISPERSANT ON THE BUNDLE DISSOCIATION OF SINGLE-WALLED CARBON NANOTUBES  |a CARBON NANOTUBES WITH VACANCIES UNDER EXTERNAL MECHANICAL STRESS AND ELECTRIC FIELD  |a Mechanical properties of nanotubes and composite materials  |a MECHANICAL PROPERTIES OF THREE-TERMINAL NANOTUBE JUNCTION DETERMINED FROM COMPUTER SIMULATIONS  |a OSCILLATION OF THE CHARGED DOUBLEWALL CARBON NANOTUBE  |a POLYMER CHAINS BEHAVIOR IN NANOTUBES: A MONTE CARLO STUDY  |a CARBON NANOTUBES AS CERAMIC MATRIX REINFORCEMENTS  |a CARBON NANOTUBES AS POLYMER BUILDING BLOCKS  |a SYNTHESIS AND CHARACTERIZATION OF EPOXY-SINGLE-WALL CARBON NANOTUBE COMPOSITES  |a VAPOUR GROWN CARBON NANO-FIBERS POLYPROPYLENE COMPOSITES AND THEIR PROPERTIES  |a Applications  |a NANOTECHNOLOGY: CHALLENGES OF CONVERGENCE, HETEROGENEITY AND HIERARCHICAL INTEGRATION  |a BEHAVIOR OF CARBON NANOTUBES IN BIOLOGICAL SYSTEMS  |a MOLECULAR DYNAMICS OF CARBON NANOTUBE-POLYPEPTIDE COMPLEXES AT THE BIOMEMBRANE-WATER INTERFACE  |a THERMAL CONDUCTIVITY ENHANCEMENT OF NANOFLUIDS  |a CARBON NANOTUBES AS ADVANCED LUBRICANT ADDITIVES  |a SYNTHESIS AND CHARACTERIZATION OF IRON NANOSTRUCTURES INSIDE POROUS ZEOLITES AND THEIR APPLICATIONS IN WATER TREATMENT TECHNOLOGIES  |a NANOSTRUCTURED CARBON GROWTH BY AN EXPANDING RADIOFREQUENCY PLASMA JET  |a DESIGN AND RELATIVE STABILITY OF MULTICOMPONENT NANOWIRES  |a MODELING OF MOLECULAR ORBITAL AND SOLID STATE PACKING POLYMER CALCULATIONS ON THE BI-POLARON NATURE OF CONDUCTING SENSOR POLY(P-PHENYLENE)  |a ND:LSB MICROCHIP LASER AS A PROMISING INSTRUMENT FOR RAMAN SPECTROSCOPY 
330 |a It is about 15 years that the carbon nanotubes have been discovered by Sumio Iijima in a transmission electron microscope. Since that time, these long hollow cylindrical carbon molecules have revealed being remarkable nanostructures for several aspects. They are composed of just one element, Carbon, and are easily produced by several techniques. A nanotube can bend easily but still is very robust. The nanotubes can be manipulated and contacted to external electrodes. Their diameter is in the nanometer range, whereas their length may exceed several micrometers, if not several millimeters. In diameter, the nanotubes behave like molecules with quantized energy levels, while in length, they behave like a crystal with a continuous distribution of momenta. Depending on its exact atomic structure, a single-wall nanotube that is to say a nanotube composed of just one rolled-up graphene sheet may be either a metal or a semiconductor. The nanotubes can carry a large electric current, they are also good thermal conductors. It is not surprising, then, that many applications have been proposed for the nanotubes. At the time of writing, one of their most promising applications is their ability to emit electrons when subjected to an external electric field. Carbon nanotubes can do so in normal vacuum conditions with a reasonable voltage threshold, which make them suitable for cold-cathode devices 
371 0 |a Accès en ligne pour les établissements français bénéficiaires des licences nationales 
371 0 |a Accès soumis à abonnement pour tout autre établissement 
371 1 |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales  |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 
410 | |0 113935854  |t NATO science series  |h Series II  |i Mathematics, physics, and chemistry  |b Ressource électronique  |c Dordrecht  |n Springer  |d 200X  |v 222 
452 | |t Carbon Nanotubes  |b Texte imprimé  |y 9781402045721 
517 | |a Proceedings of the NATO Advanced Study Institute on Carbon Nanotubes: From Basic Research to Nanotechnology, Sozopol, Bulgaria, 21-31 May 2005 
610 1 |a Chemistry 
610 2 |a Materials Science 
610 2 |a Nanotechnology 
610 2 |a Structural Materials 
610 2 |a Optical and Electronic Materials 
610 2 |a Nanotechnology and Microengineering 
610 1 |a Materials Science, general 
615 |a @Chemistry and Materials Science  |n 11644; ZDB-2-CMS  |2 Springer 
615 |a @Chemistry and Materials Science  |n 11644  |2 Springer 
676 |a 620.11  |v 23 
680 |a TA401-492 
702 1 |3 PPN112030106  |a Popov  |b Valentin N.  |4 651 
702 1 |3 PPN112030777  |a Lambin  |b Philippe  |c professeur de physique  |4 651 
801 3 |a FR  |b Abes  |c 20240911  |g AFNOR 
801 1 |a DE  |b Springer  |c 20210208  |g AACR2 
856 4 |q PDF  |u https://doi.org/10.1007/1-4020-4574-3  |z Accès sur la plateforme de l'éditeur 
856 4 |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-RPSRVS2Z-K  |z Accès sur la plateforme Istex 
856 4 |5 441099901:830928014  |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/1-4020-4574-3 
915 |5 441099901:830928014  |b SPRING4-00162 
930 |5 441099901:830928014  |b 441099901  |j g 
979 |a NUM 
991 |5 441099901:830928014  |a Exemplaire créé en masse par ITEM le 01-10-2024 15:45 
997 |a NUM  |b SPRING4-00162  |d NUMpivo  |e EM  |s d 
998 |a 980198