Categories for the working mathematician

An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the rep...

Description complète

Détails bibliographiques
Auteur principal : Mac Lane Saunders (Auteur)
Format : Livre
Langue : anglais
Titre complet : Categories for the working mathematician / Saunders Mac Lane
Édition : Second Edition
Publié : New York [etc.] : Springer , copyright 1998
Description matérielle : 1 vol. (XII-314 p.)
Collection : Graduate texts in mathematics ; 5
Contenu : Contient des exercices
Sujets :
LEADER 03258cam a2200649 4500
001 PPN046253599
003 http://www.sudoc.fr/046253599
005 20240508055300.0
010 |a 978-1-4419-3123-8  |b br.  |b 2010 
010 |a 0-387-98403-8  |b rel. 
020 |a US  |b 9745229 
035 |a (OCoLC)490319546 
035 |a ocm37928530 
035 |a DYNIX_BUNAN_344190 
035 |a bua83523 
073 1 |a 9780387984032  |b rel. 
073 1 |a 9781441931238 
100 |a 19971105h19981998k y0frey0103 ba 
101 0 |a eng 
102 |a US  |a ZZ 
105 |a a a 001yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 1 |6 z01  |a nga  |2 rdacarrier 
200 1 |a Categories for the working mathematician  |f Saunders Mac Lane 
205 |a Second Edition 
210 |a New York [etc.]  |c Springer  |d copyright 1998 
215 |a 1 vol. (XII-314 p.)  |c fig.  |d 25 cm 
225 2 |a Graduate texts in mathematics  |v 5 
305 |a Une réimpression brochée avec nouvel ISBN a été publiée en 2010 
320 |a Bibliogr. p. 297-302. Index 
327 0 |a Contient des exercices 
330 |a An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence 
410 | |0 013284819  |t Graduate texts in mathematics  |x 0072-5285  |v 5 
606 |3 PPN029635713  |a Catégories abéliennes  |2 rameau 
606 |3 PPN027239721  |a Monoïdes  |2 rameau 
606 |3 PPN027339521  |a Catégories (mathématiques)  |2 rameau 
676 |a 512.55  |v 21 
686 |a 18-01  |c 2000  |2 msc 
700 1 |3 PPN029774691  |a Mac Lane  |b Saunders  |f 1909-2005  |4 070 
801 1 |a US  |b OCLC  |g AACR2 
801 2 |a FR  |b AUROC  |g AFNOR 
801 3 |a FR  |b Abes  |c 20171124  |g AFNOR 
979 |a PHILO 
979 |a SCI 
979 |a CCFA 
915 |5 441092104:18098215X  |a 1160973199  |b 1160973199 
915 |5 441092208:639586155  |b 15624 
919 |5 441092104:18098215X  |a 1160973199 
930 |5 441092104:18098215X  |b 441092104  |j u 
930 |5 441092208:639586155  |b 441092208  |a 18A24  |j u 
991 |5 441092208:639586155  |a exemplaire créé automatiquement par l'ABES 
997 |a CCFA  |b 15624  |d CMB  |e BAP  |s d  |c 18A24 
998 |a 149615